metadata
title: WildTorch
emoji: 🔥
colorFrom: red
colorTo: yellow
sdk: gradio
sdk_version: 4.26.0
app_file: app.py
pinned: false
license: mit
WildTorch
WildTorch: Leveraging GPU Acceleration for High-Fidelity, Stochastic Wildfire Simulations with PyTorch
GitHub: https://github.com/xiazeyu/WildTorch
Installation
Install with minimal dependencies:
pip install wildtorch
Install with full dependencies (includes visualization and logging):
pip install 'wildtorch[full]'
Quick Start
pip install 'wildtorch[full]'
import wildtorch as wt
wildfire_map = wt.dataset.generate_empty_dataset()
simulator = wt.WildTorchSimulator(
wildfire_map=wildfire_map,
simulator_constants=wt.SimulatorConstants(p_continue_burn=0.7),
initial_ignition=wt.utils.create_ignition(shape=wildfire_map[0].shape),
)
logger = wt.logger.Logger()
for i in range(200):
simulator.step()
logger.log_stats(
step=i,
num_cells_on_fire=wt.metrics.cell_on_fire(simulator.fire_state).item(),
num_cells_burned_out=wt.metrics.cell_burned_out(simulator.fire_state).item(),
)
logger.snapshot_simulation(simulator)
logger.save_logs()
logger.save_snapshots()
Demo
See Our Live Demo at Hugging Face Space.
API Documents
See at Our Read the Docs.