Spaces:
Sleeping
Sleeping
File size: 8,698 Bytes
f5114b7 613ac12 f5114b7 613ac12 f5114b7 613ac12 f5114b7 613ac12 f5114b7 613ac12 f5114b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import os
import uuid
import tempfile
import streamlit as st
import openai
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.storage import InMemoryStore
from langchain.memory import ConversationBufferMemory
from langchain.llms import OpenAI
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.schema.output_parser import StrOutputParser
import uuid
from langchain.schema.document import Document
from langchain.output_parsers.openai_functions import JsonKeyOutputFunctionsParser
from langchain.document_loaders import PyPDFLoader
# Set OpenAI API key
OPENAI_API_KEY = st.secrets["OPENAI_API_KEY"]
if not OPENAI_API_KEY:
st.error("OPENAI_API_KEY not set in environment variables!")
raise SystemExit
openai.api_key = OPENAI_API_KEY
def process_pdf(uploaded_file):
with st.spinner("Processing PDF..."):
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
tmp.write(uploaded_file.getvalue())
tmp_path = tmp.name
loaders = [PyPDFLoader(tmp_path)]
docs = []
for l in loaders:
docs.extend(l.load())
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000)
docs = text_splitter.split_documents(docs)
return docs
def smaller_chunks_strategy(docs):
prompt = st.text_input("Enter Your Question:", placeholder="Ask something", key="1")
if prompt:
with st.spinner('Processing with smaller_chunks_strategy'):
vectorstore = Chroma(
collection_name="full_documents",
embedding_function=OpenAIEmbeddings()
)
store = InMemoryStore()
id_key = "doc_id"
retriever = MultiVectorRetriever(
vectorstore=vectorstore,
docstore=store,
id_key=id_key,
)
doc_ids = [str(uuid.uuid4()) for _ in docs]
child_text_splitter = RecursiveCharacterTextSplitter(chunk_size=400)
sub_docs = []
for i, doc in enumerate(docs):
_id = doc_ids[i]
_sub_docs = child_text_splitter.split_documents([doc])
for _doc in _sub_docs:
_doc.metadata[id_key] = _id
sub_docs.extend(_sub_docs)
retriever.vectorstore.add_documents(sub_docs)
retriever.docstore.mset(list(zip(doc_ids, docs)))
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
qa = ConversationalRetrievalChain.from_llm(OpenAI(temperature=0), retriever, memory=memory)
st.info(prompt, icon="π§")
result = qa({"question": prompt})
st.success(result['answer'], icon="π€")
def summary_strategy(docs):
prompt = st.text_input("Enter Your Question:", placeholder="Ask something", key="2")
if prompt:
with st.spinner('Processing with summary_strategy'):
chain = (
{"doc": lambda x: x.page_content}
| ChatPromptTemplate.from_template("Summarize the following document:\n\n{doc}")
| ChatOpenAI(max_retries=0)
| StrOutputParser()
)
summaries = chain.batch(docs, {"max_concurrency": 5})
vectorstore = Chroma(
collection_name="summaries",
embedding_function= OpenAIEmbeddings()
)
store = InMemoryStore()
id_key = "doc_id"
retriever = MultiVectorRetriever(
vectorstore=vectorstore,
docstore=store,
id_key=id_key,
)
doc_ids = [str(uuid.uuid4()) for _ in docs]
summary_docs = [Document(page_content=s, metadata={id_key: doc_ids[i]}) for i, s in enumerate(summaries)]
retriever.vectorstore.add_documents(summary_docs)
retriever.docstore.mset(list(zip(doc_ids, docs)))
qa = ConversationalRetrievalChain.from_llm(OpenAI(temperature=0), retriever, memory=ConversationBufferMemory(memory_key="chat_history", return_messages=True))
st.info(prompt, icon="π§")
result = qa({"question": prompt})
st.success(result['answer'], icon="π€")
def hypothetical_questions_strategy(docs):
prompt = st.text_input("Enter Your Question:", placeholder="Ask something", key="3")
if prompt:
with st.spinner('Processing with hypothetical_questions_strategy'):
functions = [
{
"name": "hypothetical_questions",
"description": "Generate hypothetical questions",
"parameters": {
"type": "object",
"properties": {
"questions": {
"type": "array",
"items": {
"type": "string"
},
},
},
"required": ["questions"]
}
}
]
chain = (
{"doc": lambda x: x.page_content}
| ChatPromptTemplate.from_template("Generate a list of 3 hypothetical questions that the below document could be used to answer:\n\n{doc}")
| ChatOpenAI(max_retries=0, model="gpt-4").bind(functions=functions, function_call={"name": "hypothetical_questions"})
| JsonKeyOutputFunctionsParser(key_name="questions")
)
hypothetical_questions = chain.batch(docs, {"max_concurrency": 5})
vectorstore = Chroma(
collection_name="hypo-questions",
embedding_function=OpenAIEmbeddings()
)
store = InMemoryStore()
id_key = "doc_id"
retriever = MultiVectorRetriever(
vectorstore=vectorstore,
docstore=store,
id_key=id_key,
)
doc_ids = [str(uuid.uuid4()) for _ in docs]
question_docs = []
for i, question_list in enumerate(hypothetical_questions):
question_docs.extend([Document(page_content=s, metadata={id_key: doc_ids[i]}) for s in question_list])
retriever.vectorstore.add_documents(question_docs)
retriever.docstore.mset(list(zip(doc_ids, docs)))
qa = ConversationalRetrievalChain.from_llm(OpenAI(temperature=0), retriever, memory=ConversationBufferMemory(memory_key="chat_history", return_messages=True))
st.info(prompt, icon="π§")
result = qa({"question": prompt})
st.success(result['answer'], icon="π€")
def app():
image_path = "icon.png"
st.sidebar.image(image_path, caption="icon", use_column_width=True)
st.title("VecDBCompare 0.0.1")
st.sidebar.markdown("""
# π **VecDBCompare: Your Vector DB Strategy Tester**
## π **What is it?**
VecDBCompare lets you evaluate and compare three vector database retrieval strategies in a snap!
## π€ **How to Use?**
1. **Upload a PDF** π
2. Get **Three QABots** π€π€π€, each with a different strategy.
3. **Ask questions** β and see how each bot responds differently.
4. **Decide** β
which strategy works best for you!
## π **Why VecDBCompare?**
- **Simple & Fast** β‘: Upload, ask, and compare!
- **Real-time Comparison** π: See strategies in action side-by-side.
- **Empower Your Choice** π‘: Pick the best strategy for your needs.
Dive in and discover with VecDBCompare! π
""")
uploaded_file = st.file_uploader("Choose a PDF file", type=["pdf"])
if uploaded_file:
docs = process_pdf(uploaded_file)
option = st.selectbox(
"Which retrieval strategy would you like to use?",
("Smaller Chunks", "Summary", "Hypothetical Questions")
)
if option == 'Smaller Chunks':
smaller_chunks_strategy(docs)
elif option == 'Summary':
summary_strategy(docs)
elif option == 'Hypothetical Questions':
hypothetical_questions_strategy(docs)
if __name__ == "__main__":
st.set_page_config(layout="wide")
app()
|