File size: 8,698 Bytes
f5114b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
613ac12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5114b7
 
 
 
 
613ac12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5114b7
 
 
613ac12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5114b7
 
613ac12
 
f5114b7
613ac12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5114b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import uuid
import tempfile
import streamlit as st
import openai
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.storage import InMemoryStore
from langchain.memory import ConversationBufferMemory
from langchain.llms import OpenAI
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.schema.output_parser import StrOutputParser
import uuid
from langchain.schema.document import Document
from langchain.output_parsers.openai_functions import JsonKeyOutputFunctionsParser
from langchain.document_loaders import PyPDFLoader

# Set OpenAI API key
OPENAI_API_KEY = st.secrets["OPENAI_API_KEY"]
if not OPENAI_API_KEY:
    st.error("OPENAI_API_KEY not set in environment variables!")
    raise SystemExit
openai.api_key = OPENAI_API_KEY


def process_pdf(uploaded_file):
    with st.spinner("Processing PDF..."):
        with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
            tmp.write(uploaded_file.getvalue())
            tmp_path = tmp.name
            loaders = [PyPDFLoader(tmp_path)]
            docs = []
            for l in loaders:
                docs.extend(l.load())
            text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000)
            docs = text_splitter.split_documents(docs)
    return docs


def smaller_chunks_strategy(docs):
    prompt = st.text_input("Enter Your Question:", placeholder="Ask something", key="1")
    if prompt:
        with st.spinner('Processing with smaller_chunks_strategy'):
            vectorstore = Chroma(
                collection_name="full_documents",
                embedding_function=OpenAIEmbeddings()
            )
            store = InMemoryStore()
            id_key = "doc_id"
            retriever = MultiVectorRetriever(
                vectorstore=vectorstore,
                docstore=store,
                id_key=id_key,
            )
            doc_ids = [str(uuid.uuid4()) for _ in docs]
            child_text_splitter = RecursiveCharacterTextSplitter(chunk_size=400)
            sub_docs = []
            for i, doc in enumerate(docs):
                _id = doc_ids[i]
                _sub_docs = child_text_splitter.split_documents([doc])
                for _doc in _sub_docs:
                    _doc.metadata[id_key] = _id
                sub_docs.extend(_sub_docs)
    
            retriever.vectorstore.add_documents(sub_docs)
            retriever.docstore.mset(list(zip(doc_ids, docs)))
            memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
            qa = ConversationalRetrievalChain.from_llm(OpenAI(temperature=0), retriever, memory=memory)
            st.info(prompt, icon="🧐")
            result = qa({"question": prompt})
            st.success(result['answer'], icon="πŸ€–")


def summary_strategy(docs):
    prompt = st.text_input("Enter Your Question:", placeholder="Ask something", key="2")
    if prompt:
        with st.spinner('Processing with summary_strategy'):
            chain = (
                {"doc": lambda x: x.page_content}
                | ChatPromptTemplate.from_template("Summarize the following document:\n\n{doc}")
                | ChatOpenAI(max_retries=0)
                | StrOutputParser()
            )
            summaries = chain.batch(docs, {"max_concurrency": 5})
            vectorstore = Chroma(
                collection_name="summaries",
                embedding_function= OpenAIEmbeddings()
            )
            store = InMemoryStore()
            id_key = "doc_id"
            retriever = MultiVectorRetriever(
                vectorstore=vectorstore,
                docstore=store,
                id_key=id_key,
            )
            doc_ids = [str(uuid.uuid4()) for _ in docs]
            summary_docs = [Document(page_content=s, metadata={id_key: doc_ids[i]}) for i, s in enumerate(summaries)]
            retriever.vectorstore.add_documents(summary_docs)
            retriever.docstore.mset(list(zip(doc_ids, docs)))
            qa = ConversationalRetrievalChain.from_llm(OpenAI(temperature=0), retriever, memory=ConversationBufferMemory(memory_key="chat_history", return_messages=True))
            st.info(prompt, icon="🧐")
            result = qa({"question": prompt})
            st.success(result['answer'], icon="πŸ€–")


def hypothetical_questions_strategy(docs):
    prompt = st.text_input("Enter Your Question:", placeholder="Ask something", key="3")
    if prompt:
        with st.spinner('Processing with hypothetical_questions_strategy'):
            functions = [
                {
                    "name": "hypothetical_questions",
                    "description": "Generate hypothetical questions",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "questions": {
                                "type": "array",
                                "items": {
                                    "type": "string"
                                },
                            },
                        },
                        "required": ["questions"]
                    }
                }
            ]
            chain = (
                {"doc": lambda x: x.page_content}
                | ChatPromptTemplate.from_template("Generate a list of 3 hypothetical questions that the below document could be used to answer:\n\n{doc}")
                | ChatOpenAI(max_retries=0, model="gpt-4").bind(functions=functions, function_call={"name": "hypothetical_questions"})
                | JsonKeyOutputFunctionsParser(key_name="questions")
            )
            hypothetical_questions = chain.batch(docs, {"max_concurrency": 5})
            vectorstore = Chroma(
                collection_name="hypo-questions",
                embedding_function=OpenAIEmbeddings()
            )
            store = InMemoryStore()
            id_key = "doc_id"
            retriever = MultiVectorRetriever(
                vectorstore=vectorstore,
                docstore=store,
                id_key=id_key,
            )
            doc_ids = [str(uuid.uuid4()) for _ in docs]
            question_docs = []
            for i, question_list in enumerate(hypothetical_questions):
                question_docs.extend([Document(page_content=s, metadata={id_key: doc_ids[i]}) for s in question_list])
            retriever.vectorstore.add_documents(question_docs)
            retriever.docstore.mset(list(zip(doc_ids, docs)))
            qa = ConversationalRetrievalChain.from_llm(OpenAI(temperature=0), retriever, memory=ConversationBufferMemory(memory_key="chat_history", return_messages=True))
            st.info(prompt, icon="🧐")
            result = qa({"question": prompt})
            st.success(result['answer'], icon="πŸ€–")



def app():
    image_path = "icon.png"
    st.sidebar.image(image_path, caption="icon", use_column_width=True)
    st.title("VecDBCompare 0.0.1")
    st.sidebar.markdown("""
        # πŸš€ **VecDBCompare: Your Vector DB Strategy Tester**
        ## πŸ“Œ **What is it?**
        VecDBCompare lets you evaluate and compare three vector database retrieval strategies in a snap!
        ## πŸ“€ **How to Use?**
        1. **Upload a PDF** πŸ“„
        2. Get **Three QABots** πŸ€–πŸ€–πŸ€–, each with a different strategy.
        3. **Ask questions** ❓ and see how each bot responds differently.
        4. **Decide** βœ… which strategy works best for you!
        ## 🌟 **Why VecDBCompare?**
        - **Simple & Fast** ⚑: Upload, ask, and compare!
        - **Real-time Comparison** πŸ”: See strategies in action side-by-side.
        - **Empower Your Choice** πŸ’‘: Pick the best strategy for your needs.
        Dive in and discover with VecDBCompare! 🌐
    """)
    uploaded_file = st.file_uploader("Choose a PDF file", type=["pdf"])
    if uploaded_file:
        docs = process_pdf(uploaded_file)
        option = st.selectbox(
            "Which retrieval strategy would you like to use?",
            ("Smaller Chunks", "Summary", "Hypothetical Questions")
        )
        if option == 'Smaller Chunks':
            smaller_chunks_strategy(docs)
        elif option == 'Summary':
            summary_strategy(docs)
        elif option == 'Hypothetical Questions':
            hypothetical_questions_strategy(docs)


if __name__ == "__main__":
    st.set_page_config(layout="wide")
    app()