Update populate to add rank and model information
#2
by
jcole1
- opened
- src/populate.py +12 -5
src/populate.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
import json
|
2 |
import os
|
3 |
-
|
4 |
import pandas as pd
|
5 |
|
|
|
6 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
7 |
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
8 |
from src.leaderboard.read_evals import get_raw_eval_results
|
@@ -11,15 +12,21 @@ from src.leaderboard.read_evals import get_raw_eval_results
|
|
11 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
12 |
"""Creates a dataframe from all the individual experiment results"""
|
13 |
raw_data = get_raw_eval_results(results_path, requests_path)
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
df = pd.DataFrame.from_records(all_data_json)
|
17 |
-
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
18 |
df = df[cols].round(decimals=2)
|
19 |
|
20 |
# filter out if any of the benchmarks have not been produced
|
21 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
22 |
-
|
|
|
23 |
|
24 |
|
25 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
@@ -55,4 +62,4 @@ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
|
55 |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
56 |
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
57 |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
58 |
-
return df_finished[cols], df_running[cols], df_pending[cols]
|
|
|
1 |
import json
|
2 |
import os
|
3 |
+
import numpy as np
|
4 |
import pandas as pd
|
5 |
|
6 |
+
|
7 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
8 |
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
9 |
from src.leaderboard.read_evals import get_raw_eval_results
|
|
|
12 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
13 |
"""Creates a dataframe from all the individual experiment results"""
|
14 |
raw_data = get_raw_eval_results(results_path, requests_path)
|
15 |
+
for result in raw_data:
|
16 |
+
result.average = np.mean(list(result.results.values()))
|
17 |
+
sorted_results = sorted(raw_data, key=lambda r: r.average, reverse=True)
|
18 |
+
# ranks = [rank+1 for rank, value in enumerate(sorted_results)]
|
19 |
+
# rank = [rank+1 for rank, value in enumerate(average)]
|
20 |
+
all_data_json = [v.to_dict(i+1) for i, v in enumerate(raw_data)]
|
21 |
|
22 |
df = pd.DataFrame.from_records(all_data_json)
|
23 |
+
# df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
24 |
df = df[cols].round(decimals=2)
|
25 |
|
26 |
# filter out if any of the benchmarks have not been produced
|
27 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
28 |
+
print(df)
|
29 |
+
return df
|
30 |
|
31 |
|
32 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
|
|
62 |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
63 |
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
64 |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
65 |
+
return df_finished[cols], df_running[cols], df_pending[cols]
|