|
# :computer: How to Train/Finetune Real-ESRGAN |
|
|
|
- [Train Real-ESRGAN](#train-real-esrgan) |
|
- [Overview](#overview) |
|
- [Dataset Preparation](#dataset-preparation) |
|
- [Train Real-ESRNet](#Train-Real-ESRNet) |
|
- [Train Real-ESRGAN](#Train-Real-ESRGAN) |
|
- [Finetune Real-ESRGAN on your own dataset](#Finetune-Real-ESRGAN-on-your-own-dataset) |
|
- [Generate degraded images on the fly](#Generate-degraded-images-on-the-fly) |
|
- [Use paired training data](#use-your-own-paired-data) |
|
|
|
[English](Training.md) **|** [简体中文](Training_CN.md) |
|
|
|
## Train Real-ESRGAN |
|
|
|
### Overview |
|
|
|
The training has been divided into two stages. These two stages have the same data synthesis process and training pipeline, except for the loss functions. Specifically, |
|
|
|
1. We first train Real-ESRNet with L1 loss from the pre-trained model ESRGAN. |
|
1. We then use the trained Real-ESRNet model as an initialization of the generator, and train the Real-ESRGAN with a combination of L1 loss, perceptual loss and GAN loss. |
|
|
|
### Dataset Preparation |
|
|
|
We use DF2K (DIV2K and Flickr2K) + OST datasets for our training. Only HR images are required. <br> |
|
You can download from : |
|
|
|
1. DIV2K: http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_train_HR.zip |
|
2. Flickr2K: https://cv.snu.ac.kr/research/EDSR/Flickr2K.tar |
|
3. OST: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/datasets/OST_dataset.zip |
|
|
|
Here are steps for data preparation. |
|
|
|
#### Step 1: [Optional] Generate multi-scale images |
|
|
|
For the DF2K dataset, we use a multi-scale strategy, *i.e.*, we downsample HR images to obtain several Ground-Truth images with different scales. <br> |
|
You can use the [scripts/generate_multiscale_DF2K.py](scripts/generate_multiscale_DF2K.py) script to generate multi-scale images. <br> |
|
Note that this step can be omitted if you just want to have a fast try. |
|
|
|
```bash |
|
python scripts/generate_multiscale_DF2K.py --input datasets/DF2K/DF2K_HR --output datasets/DF2K/DF2K_multiscale |
|
``` |
|
|
|
#### Step 2: [Optional] Crop to sub-images |
|
|
|
We then crop DF2K images into sub-images for faster IO and processing.<br> |
|
This step is optional if your IO is enough or your disk space is limited. |
|
|
|
You can use the [scripts/extract_subimages.py](scripts/extract_subimages.py) script. Here is the example: |
|
|
|
```bash |
|
python scripts/extract_subimages.py --input datasets/DF2K/DF2K_multiscale --output datasets/DF2K/DF2K_multiscale_sub --crop_size 400 --step 200 |
|
``` |
|
|
|
#### Step 3: Prepare a txt for meta information |
|
|
|
You need to prepare a txt file containing the image paths. The following are some examples in `meta_info_DF2Kmultiscale+OST_sub.txt` (As different users may have different sub-images partitions, this file is not suitable for your purpose and you need to prepare your own txt file): |
|
|
|
```txt |
|
DF2K_HR_sub/000001_s001.png |
|
DF2K_HR_sub/000001_s002.png |
|
DF2K_HR_sub/000001_s003.png |
|
... |
|
``` |
|
|
|
You can use the [scripts/generate_meta_info.py](scripts/generate_meta_info.py) script to generate the txt file. <br> |
|
You can merge several folders into one meta_info txt. Here is the example: |
|
|
|
```bash |
|
python scripts/generate_meta_info.py --input datasets/DF2K/DF2K_HR datasets/DF2K/DF2K_multiscale --root datasets/DF2K datasets/DF2K --meta_info datasets/DF2K/meta_info/meta_info_DF2Kmultiscale.txt |
|
``` |
|
|
|
### Train Real-ESRNet |
|
|
|
1. Download pre-trained model [ESRGAN](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth) into `experiments/pretrained_models`. |
|
```bash |
|
wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth -P experiments/pretrained_models |
|
``` |
|
1. Modify the content in the option file `options/train_realesrnet_x4plus.yml` accordingly: |
|
```yml |
|
train: |
|
name: DF2K+OST |
|
type: RealESRGANDataset |
|
dataroot_gt: datasets/DF2K # modify to the root path of your folder |
|
meta_info: realesrgan/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt # modify to your own generate meta info txt |
|
io_backend: |
|
type: disk |
|
``` |
|
1. If you want to perform validation during training, uncomment those lines and modify accordingly: |
|
```yml |
|
# Uncomment these for validation |
|
# val: |
|
# name: validation |
|
# type: PairedImageDataset |
|
# dataroot_gt: path_to_gt |
|
# dataroot_lq: path_to_lq |
|
# io_backend: |
|
# type: disk |
|
|
|
... |
|
|
|
# Uncomment these for validation |
|
# validation settings |
|
# val: |
|
# val_freq: !!float 5e3 |
|
# save_img: True |
|
|
|
# metrics: |
|
# psnr: # metric name, can be arbitrary |
|
# type: calculate_psnr |
|
# crop_border: 4 |
|
# test_y_channel: false |
|
``` |
|
1. Before the formal training, you may run in the `--debug` mode to see whether everything is OK. We use four GPUs for training: |
|
```bash |
|
CUDA_VISIBLE_DEVICES=0,1,2,3 \ |
|
python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --launcher pytorch --debug |
|
``` |
|
|
|
Train with **a single GPU** in the *debug* mode: |
|
```bash |
|
python realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --debug |
|
``` |
|
1. The formal training. We use four GPUs for training. We use the `--auto_resume` argument to automatically resume the training if necessary. |
|
```bash |
|
CUDA_VISIBLE_DEVICES=0,1,2,3 \ |
|
python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --launcher pytorch --auto_resume |
|
``` |
|
|
|
Train with **a single GPU**: |
|
```bash |
|
python realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --auto_resume |
|
``` |
|
|
|
### Train Real-ESRGAN |
|
|
|
1. After the training of Real-ESRNet, you now have the file `experiments/train_RealESRNetx4plus_1000k_B12G4_fromESRGAN/model/net_g_1000000.pth`. If you need to specify the pre-trained path to other files, modify the `pretrain_network_g` value in the option file `train_realesrgan_x4plus.yml`. |
|
1. Modify the option file `train_realesrgan_x4plus.yml` accordingly. Most modifications are similar to those listed above. |
|
1. Before the formal training, you may run in the `--debug` mode to see whether everything is OK. We use four GPUs for training: |
|
```bash |
|
CUDA_VISIBLE_DEVICES=0,1,2,3 \ |
|
python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --launcher pytorch --debug |
|
``` |
|
|
|
Train with **a single GPU** in the *debug* mode: |
|
```bash |
|
python realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --debug |
|
``` |
|
1. The formal training. We use four GPUs for training. We use the `--auto_resume` argument to automatically resume the training if necessary. |
|
```bash |
|
CUDA_VISIBLE_DEVICES=0,1,2,3 \ |
|
python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --launcher pytorch --auto_resume |
|
``` |
|
|
|
Train with **a single GPU**: |
|
```bash |
|
python realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --auto_resume |
|
``` |
|
|
|
## Finetune Real-ESRGAN on your own dataset |
|
|
|
You can finetune Real-ESRGAN on your own dataset. Typically, the fine-tuning process can be divided into two cases: |
|
|
|
1. [Generate degraded images on the fly](#Generate-degraded-images-on-the-fly) |
|
1. [Use your own **paired** data](#Use-paired-training-data) |
|
|
|
### Generate degraded images on the fly |
|
|
|
Only high-resolution images are required. The low-quality images are generated with the degradation process described in Real-ESRGAN during training. |
|
|
|
**1. Prepare dataset** |
|
|
|
See [this section](#dataset-preparation) for more details. |
|
|
|
**2. Download pre-trained models** |
|
|
|
Download pre-trained models into `experiments/pretrained_models`. |
|
|
|
- *RealESRGAN_x4plus.pth*: |
|
```bash |
|
wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P experiments/pretrained_models |
|
``` |
|
|
|
- *RealESRGAN_x4plus_netD.pth*: |
|
```bash |
|
wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.3/RealESRGAN_x4plus_netD.pth -P experiments/pretrained_models |
|
``` |
|
|
|
**3. Finetune** |
|
|
|
Modify [options/finetune_realesrgan_x4plus.yml](options/finetune_realesrgan_x4plus.yml) accordingly, especially the `datasets` part: |
|
|
|
```yml |
|
train: |
|
name: DF2K+OST |
|
type: RealESRGANDataset |
|
dataroot_gt: datasets/DF2K # modify to the root path of your folder |
|
meta_info: realesrgan/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt # modify to your own generate meta info txt |
|
io_backend: |
|
type: disk |
|
``` |
|
|
|
We use four GPUs for training. We use the `--auto_resume` argument to automatically resume the training if necessary. |
|
|
|
```bash |
|
CUDA_VISIBLE_DEVICES=0,1,2,3 \ |
|
python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/finetune_realesrgan_x4plus.yml --launcher pytorch --auto_resume |
|
``` |
|
|
|
Finetune with **a single GPU**: |
|
```bash |
|
python realesrgan/train.py -opt options/finetune_realesrgan_x4plus.yml --auto_resume |
|
``` |
|
|
|
### Use your own paired data |
|
|
|
You can also finetune RealESRGAN with your own paired data. It is more similar to fine-tuning ESRGAN. |
|
|
|
**1. Prepare dataset** |
|
|
|
Assume that you already have two folders: |
|
|
|
- **gt folder** (Ground-truth, high-resolution images): *datasets/DF2K/DIV2K_train_HR_sub* |
|
- **lq folder** (Low quality, low-resolution images): *datasets/DF2K/DIV2K_train_LR_bicubic_X4_sub* |
|
|
|
Then, you can prepare the meta_info txt file using the script [scripts/generate_meta_info_pairdata.py](scripts/generate_meta_info_pairdata.py): |
|
|
|
```bash |
|
python scripts/generate_meta_info_pairdata.py --input datasets/DF2K/DIV2K_train_HR_sub datasets/DF2K/DIV2K_train_LR_bicubic_X4_sub --meta_info datasets/DF2K/meta_info/meta_info_DIV2K_sub_pair.txt |
|
``` |
|
|
|
**2. Download pre-trained models** |
|
|
|
Download pre-trained models into `experiments/pretrained_models`. |
|
|
|
- *RealESRGAN_x4plus.pth* |
|
```bash |
|
wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P experiments/pretrained_models |
|
``` |
|
|
|
- *RealESRGAN_x4plus_netD.pth* |
|
```bash |
|
wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.3/RealESRGAN_x4plus_netD.pth -P experiments/pretrained_models |
|
``` |
|
|
|
**3. Finetune** |
|
|
|
Modify [options/finetune_realesrgan_x4plus_pairdata.yml](options/finetune_realesrgan_x4plus_pairdata.yml) accordingly, especially the `datasets` part: |
|
|
|
```yml |
|
train: |
|
name: DIV2K |
|
type: RealESRGANPairedDataset |
|
dataroot_gt: datasets/DF2K # modify to the root path of your folder |
|
dataroot_lq: datasets/DF2K # modify to the root path of your folder |
|
meta_info: datasets/DF2K/meta_info/meta_info_DIV2K_sub_pair.txt # modify to your own generate meta info txt |
|
io_backend: |
|
type: disk |
|
``` |
|
|
|
We use four GPUs for training. We use the `--auto_resume` argument to automatically resume the training if necessary. |
|
|
|
```bash |
|
CUDA_VISIBLE_DEVICES=0,1,2,3 \ |
|
python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/finetune_realesrgan_x4plus_pairdata.yml --launcher pytorch --auto_resume |
|
``` |
|
|
|
Finetune with **a single GPU**: |
|
```bash |
|
python realesrgan/train.py -opt options/finetune_realesrgan_x4plus_pairdata.yml --auto_resume |
|
``` |
|
|