FakeVideoDetect / validate.py
ybbwcwaps
AI Video
3cc4a06
raw
history blame
4.81 kB
import os
import torch
import torchvision.transforms as transforms
import torch.utils.data
import numpy as np
from sklearn.metrics import average_precision_score, precision_recall_curve, accuracy_score
import pickle
from tqdm import tqdm
from datetime import datetime
from copy import deepcopy
from dataset_paths import DATASET_PATHS
import random
from datasetss import create_test_dataloader
from utilss.logger import create_logger
import options
from networks.validator import Validator
SEED = 0
def set_seed():
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
np.random.seed(SEED)
random.seed(SEED)
MEAN = {
"imagenet":[0.485, 0.456, 0.406],
"clip":[0.48145466, 0.4578275, 0.40821073]
}
STD = {
"imagenet":[0.229, 0.224, 0.225],
"clip":[0.26862954, 0.26130258, 0.27577711]
}
def find_best_threshold(y_true, y_pred):
"We assume first half is real 0, and the second half is fake 1"
N = y_true.shape[0]
if y_pred[0:N//2].max() <= y_pred[N//2:N].min(): # perfectly separable case
return (y_pred[0:N//2].max() + y_pred[N//2:N].min()) / 2
best_acc = 0
best_thres = 0
for thres in y_pred:
temp = deepcopy(y_pred)
temp[temp>=thres] = 1
temp[temp<thres] = 0
acc = (temp == y_true).sum() / N
if acc >= best_acc:
best_thres = thres
best_acc = acc
return best_thres
def calculate_acc(y_true, y_pred, thres):
r_acc = accuracy_score(y_true[y_true==0], y_pred[y_true==0] > thres)
f_acc = accuracy_score(y_true[y_true==1], y_pred[y_true==1] > thres)
acc = accuracy_score(y_true, y_pred > thres)
return r_acc, f_acc, acc
def validate(model, loader, logger, find_thres=False):
with torch.no_grad():
y_true, y_pred = [], []
logger.info ("Length of dataset: %d" %(len(loader)))
pbar = tqdm(loader)
for data in pbar:
pbar.set_description(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
model.set_input(data)
y_pred.extend(model.model(model.input).view(-1).unsqueeze(1).sigmoid().flatten().tolist())
y_true.extend(data[1].flatten().tolist())
y_true, y_pred = np.array(y_true), np.array(y_pred)
# ================== save this if you want to plot the curves =========== #
# torch.save( torch.stack( [torch.tensor(y_true), torch.tensor(y_pred)] ), 'baseline_predication_for_pr_roc_curve.pth' )
# exit()
# =================================================================== #
# print(y_pred, '\n', y_true)
# Get AP
ap = average_precision_score(y_true, y_pred)
# Acc based on 0.5
r_acc0, f_acc0, acc0 = calculate_acc(y_true, y_pred, 0.5)
if not find_thres:
return ap, r_acc0, f_acc0, acc0
# Acc based on the best thres
best_thres = find_best_threshold(y_true, y_pred)
r_acc1, f_acc1, acc1 = calculate_acc(y_true, y_pred, best_thres)
return ap, r_acc0, f_acc0, acc0, r_acc1, f_acc1, acc1, best_thres
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = #
def recursively_read(rootdir, must_contain, exts=["png", "jpg", "JPEG", "jpeg", "bmp"]):
out = []
for r, d, f in os.walk(rootdir):
for file in f:
if (file.split('.')[1] in exts) and (must_contain in os.path.join(r, file)):
out.append(os.path.join(r, file))
return out
def get_list(path, must_contain=''):
if ".pickle" in path:
with open(path, 'rb') as f:
image_list = pickle.load(f)
image_list = [ item for item in image_list if must_contain in item ]
else:
image_list = recursively_read(path, must_contain)
return image_list
if __name__ == '__main__':
val_opt = options.TestOptions().parse()
output_dir=os.path.join(val_opt.output, val_opt.name)
os.makedirs(output_dir, exist_ok=True)
logger = create_logger(output_dir=output_dir, name="FakeVideoDetector")
logger.info(f"working dir: {output_dir}")
model = Validator(val_opt)
model.load_state_dict(val_opt.ckpt)
logger.info("ckpt loaded!")
val_loader = create_test_dataloader(val_opt, clip_model = None, transform = model.clip_model.preprocess)
ap, r_acc0, f_acc0, acc0, r_acc1, f_acc1, acc1, best_thres = validate(model, val_loader, logger, find_thres=True, )
print(f"ap: {ap}, r_acc0: {r_acc0}, f_acc0: {f_acc0}, acc0:{acc0}, r_acc1: {r_acc1}, f_acc1: {f_acc1}, acc1: {acc1}, best_thres: {best_thres} ")
with open( os.path.join(val_opt.name,'ap.txt'), 'a') as f:
f.write(str(round(ap*100, 2))+'\n' )
with open( os.path.join(val_opt.name,'acc0.txt'), 'a') as f:
f.write(str(round(r_acc0*100, 2))+' '+str(round(f_acc0*100, 2))+' '+str(round(acc0*100, 2))+'\n' )