Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import torchvision.transforms as transforms | |
import torch.utils.data | |
import numpy as np | |
from sklearn.metrics import average_precision_score, precision_recall_curve, accuracy_score | |
import pickle | |
from tqdm import tqdm | |
from datetime import datetime | |
from copy import deepcopy | |
from dataset_paths import DATASET_PATHS | |
import random | |
from datasetss import create_test_dataloader | |
from utilss.logger import create_logger | |
import options | |
from networks.validator import Validator | |
SEED = 0 | |
def set_seed(): | |
torch.manual_seed(SEED) | |
torch.cuda.manual_seed(SEED) | |
np.random.seed(SEED) | |
random.seed(SEED) | |
MEAN = { | |
"imagenet":[0.485, 0.456, 0.406], | |
"clip":[0.48145466, 0.4578275, 0.40821073] | |
} | |
STD = { | |
"imagenet":[0.229, 0.224, 0.225], | |
"clip":[0.26862954, 0.26130258, 0.27577711] | |
} | |
def find_best_threshold(y_true, y_pred): | |
"We assume first half is real 0, and the second half is fake 1" | |
N = y_true.shape[0] | |
if y_pred[0:N//2].max() <= y_pred[N//2:N].min(): # perfectly separable case | |
return (y_pred[0:N//2].max() + y_pred[N//2:N].min()) / 2 | |
best_acc = 0 | |
best_thres = 0 | |
for thres in y_pred: | |
temp = deepcopy(y_pred) | |
temp[temp>=thres] = 1 | |
temp[temp<thres] = 0 | |
acc = (temp == y_true).sum() / N | |
if acc >= best_acc: | |
best_thres = thres | |
best_acc = acc | |
return best_thres | |
def calculate_acc(y_true, y_pred, thres): | |
r_acc = accuracy_score(y_true[y_true==0], y_pred[y_true==0] > thres) | |
f_acc = accuracy_score(y_true[y_true==1], y_pred[y_true==1] > thres) | |
acc = accuracy_score(y_true, y_pred > thres) | |
return r_acc, f_acc, acc | |
def validate(model, loader, logger, find_thres=False): | |
with torch.no_grad(): | |
y_true, y_pred = [], [] | |
logger.info ("Length of dataset: %d" %(len(loader))) | |
pbar = tqdm(loader) | |
for data in pbar: | |
pbar.set_description(datetime.now().strftime("%Y-%m-%d %H:%M:%S")) | |
model.set_input(data) | |
y_pred.extend(model.model(model.input).view(-1).unsqueeze(1).sigmoid().flatten().tolist()) | |
y_true.extend(data[1].flatten().tolist()) | |
y_true, y_pred = np.array(y_true), np.array(y_pred) | |
# ================== save this if you want to plot the curves =========== # | |
# torch.save( torch.stack( [torch.tensor(y_true), torch.tensor(y_pred)] ), 'baseline_predication_for_pr_roc_curve.pth' ) | |
# exit() | |
# =================================================================== # | |
# print(y_pred, '\n', y_true) | |
# Get AP | |
ap = average_precision_score(y_true, y_pred) | |
# Acc based on 0.5 | |
r_acc0, f_acc0, acc0 = calculate_acc(y_true, y_pred, 0.5) | |
if not find_thres: | |
return ap, r_acc0, f_acc0, acc0 | |
# Acc based on the best thres | |
best_thres = find_best_threshold(y_true, y_pred) | |
r_acc1, f_acc1, acc1 = calculate_acc(y_true, y_pred, best_thres) | |
return ap, r_acc0, f_acc0, acc0, r_acc1, f_acc1, acc1, best_thres | |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = # | |
def recursively_read(rootdir, must_contain, exts=["png", "jpg", "JPEG", "jpeg", "bmp"]): | |
out = [] | |
for r, d, f in os.walk(rootdir): | |
for file in f: | |
if (file.split('.')[1] in exts) and (must_contain in os.path.join(r, file)): | |
out.append(os.path.join(r, file)) | |
return out | |
def get_list(path, must_contain=''): | |
if ".pickle" in path: | |
with open(path, 'rb') as f: | |
image_list = pickle.load(f) | |
image_list = [ item for item in image_list if must_contain in item ] | |
else: | |
image_list = recursively_read(path, must_contain) | |
return image_list | |
if __name__ == '__main__': | |
val_opt = options.TestOptions().parse() | |
output_dir=os.path.join(val_opt.output, val_opt.name) | |
os.makedirs(output_dir, exist_ok=True) | |
logger = create_logger(output_dir=output_dir, name="FakeVideoDetector") | |
logger.info(f"working dir: {output_dir}") | |
model = Validator(val_opt) | |
model.load_state_dict(val_opt.ckpt) | |
logger.info("ckpt loaded!") | |
val_loader = create_test_dataloader(val_opt, clip_model = None, transform = model.clip_model.preprocess) | |
ap, r_acc0, f_acc0, acc0, r_acc1, f_acc1, acc1, best_thres = validate(model, val_loader, logger, find_thres=True, ) | |
print(f"ap: {ap}, r_acc0: {r_acc0}, f_acc0: {f_acc0}, acc0:{acc0}, r_acc1: {r_acc1}, f_acc1: {f_acc1}, acc1: {acc1}, best_thres: {best_thres} ") | |
with open( os.path.join(val_opt.name,'ap.txt'), 'a') as f: | |
f.write(str(round(ap*100, 2))+'\n' ) | |
with open( os.path.join(val_opt.name,'acc0.txt'), 'a') as f: | |
f.write(str(round(r_acc0*100, 2))+' '+str(round(f_acc0*100, 2))+' '+str(round(acc0*100, 2))+'\n' ) | |