Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import torch.nn as nn | |
from torch.nn import init | |
from torch.optim import lr_scheduler | |
class BaseModel(nn.Module): | |
def __init__(self, opt): | |
super(BaseModel, self).__init__() | |
self.opt = opt | |
self.total_steps = 0 | |
self.save_dir = os.path.join(opt.checkpoints_dir, opt.name) | |
self.device = torch.device('cuda:{}'.format(opt.gpu_ids[0])) if opt.gpu_ids else torch.device('cpu') | |
if opt.gpu_ids: | |
self.device= torch.device('cuda:{}'.format(opt.gpu_ids[0])) | |
else: | |
print("gpu is not available! ") | |
# exit() | |
self.device = torch.device('cpu') | |
# self.device = torch.device('cuda') | |
def save_networks(self, save_filename): | |
save_path = os.path.join(self.save_dir, save_filename) | |
# serialize model and optimizer to dict | |
state_dict = { | |
'model': self.model.state_dict(), | |
'optimizer' : self.optimizer.state_dict(), | |
'total_steps' : self.total_steps, | |
} | |
torch.save(state_dict, save_path) | |
def eval(self): | |
self.model.eval() | |
def test(self): | |
with torch.no_grad(): | |
self.forward() |