Spaces:
Sleeping
Sleeping
File size: 6,803 Bytes
02ba63a 0036fb1 02ba63a 01a01d7 02ba63a 01a01d7 02ba63a 01a01d7 02ba63a 0036fb1 02ba63a 01a01d7 02ba63a 2e99060 02ba63a 01a01d7 02ba63a 01a01d7 2e99060 9d42859 02ba63a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import gradio as gr
import spaces
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
from model_module import AutoencoderModule
from dataset import MyDataset, load_filenames
import numpy as np
from PIL import Image
import base64
from io import BytesIO
# モデルとデータの読み込み
def load_model():
model_path = "checkpoints/autoencoder-epoch=49-train_loss=1.01.ckpt"
feature_dim = 64
model = AutoencoderModule(feature_dim=feature_dim)
state_dict = torch.load(model_path)
# # state_dict のキーを修正
# new_state_dict = {}
# for key in state_dict:
# new_key = "model." + key
# new_state_dict[new_key] = state_dict[key]
model.load_state_dict(state_dict['state_dict'])
model.eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
print("Model loaded successfully.")
return model, device
def load_data(device, img_dir="resources/trainB/", image_size=112, batch_size=32):
filenames = load_filenames(img_dir)
train_X = filenames[:1000]
train_ds = MyDataset(train_X, img_dir=img_dir, img_size=image_size)
train_loader = DataLoader(
train_ds,
batch_size=batch_size,
shuffle=True,
num_workers=0,
)
iterator = iter(train_loader)
x, _, _ = next(iterator)
x = x.to(device)
x = x[:,0].to(device)
print("Data loaded successfully.")
return x
model, device = load_model()
image_size = 112
batch_size = 32
x = load_data(device)
# アップロード画像の前処理
def preprocess_uploaded_image(uploaded_image, image_size):
# ndarrayの場合はPILイメージに変換
if type(uploaded_image) == np.ndarray:
uploaded_image = Image.fromarray(uploaded_image)
uploaded_image = uploaded_image.convert("RGB")
uploaded_image = uploaded_image.resize((image_size, image_size))
uploaded_image = np.array(uploaded_image).transpose(2, 0, 1) / 255.0
uploaded_image = torch.tensor(uploaded_image, dtype=torch.float32).unsqueeze(0).to(device)
return uploaded_image
# ヒートマップの生成関数
@spaces.GPU
def get_heatmaps(source_num, x_coords, y_coords, uploaded_image):
if type(uploaded_image) == str:
uploaded_image = Image.open(uploaded_image)
if type(source_num) == str:
source_num = int(source_num)
if type(x_coords) == str:
x_coords = int(x_coords)
if type(y_coords) == str:
y_coords = int(y_coords)
with torch.no_grad():
dec5, _ = model(x)
img = x
feature_map = dec5
batch_size = feature_map.size(0)
feature_dim = feature_map.size(1)
# アップロード画像の前処理
if uploaded_image is not None:
uploaded_image = preprocess_uploaded_image(uploaded_image['composite'], image_size)
target_feature_map, _ = model(uploaded_image)
img = torch.cat((img, uploaded_image))
feature_map = torch.cat((feature_map, target_feature_map))
batch_size += 1
else:
uploaded_image = torch.zeros(1, 3, image_size, image_size, device=device)
target_num = batch_size - 1
x_coords = [x_coords] * batch_size
y_coords = [y_coords] * batch_size
vectors = feature_map[torch.arange(feature_map.size(0)), :, y_coords, x_coords]
vector = vectors[source_num]
reshaped_feature_map = feature_map.permute(0, 2, 3, 1).view(feature_map.size(0), -1, feature_dim)
batch_distance_map = F.pairwise_distance(reshaped_feature_map, vector).view(feature_map.size(0), image_size, image_size)
norm_batch_distance_map = 1 / torch.cosh(20 * (batch_distance_map - batch_distance_map.min()) / (batch_distance_map.max() - batch_distance_map.min())) ** 2
source_map = norm_batch_distance_map[source_num]
target_map = norm_batch_distance_map[target_num]
alpha = 0.7
blended_source = (1 - alpha) * img[source_num] + alpha * torch.cat(((norm_batch_distance_map[source_num] / norm_batch_distance_map[source_num].max()).unsqueeze(0), torch.zeros(2, image_size, image_size, device=device)))
blended_target = (1 - alpha) * img[target_num] + alpha * torch.cat(((norm_batch_distance_map[target_num] / norm_batch_distance_map[target_num].max()).unsqueeze(0), torch.zeros(2, image_size, image_size, device=device)))
# Matplotlibでプロットして画像として保存
fig, axs = plt.subplots(2, 2, figsize=(10, 10))
axs[0, 0].imshow(source_map.cpu(), cmap='hot')
axs[0, 0].set_title("Source Map")
axs[0, 1].imshow(target_map.cpu(), cmap='hot')
axs[0, 1].set_title("Target Map")
axs[1, 0].imshow(blended_source.permute(1, 2, 0).cpu())
axs[1, 0].set_title("Blended Source")
axs[1, 1].imshow(blended_target.permute(1, 2, 0).cpu())
axs[1, 1].set_title("Blended Target")
for ax in axs.flat:
ax.axis('off')
plt.tight_layout()
plt.close(fig)
return fig
with gr.Blocks() as demo:
# title
gr.Markdown("# TripletGeoEncoder Feature Map Visualization")
# description
gr.Markdown("This demo visualizes the feature maps of a TripletGeoEncoder trained on the CelebA dataset using self-supervised learning without annotations from only 1000 images. "
"The feature maps are visualized as heatmaps, where the source map shows the distance of each pixel in the source image to the selected pixel, and the target map shows the distance of each pixel in the target image to the selected pixel. "
"The blended source and target images show the source and target images with the source and target maps overlaid, respectively. "
"For further information, please contact me on X (formerly Twitter): @Yeq6X.")
input_image = gr.ImageEditor(label="Cropped Image", elem_id="input_image", crop_size=(112, 112), show_fullscreen_button=True)
gr.Interface(
get_heatmaps,
inputs=[
gr.Slider(0, batch_size - 1, step=1, label="Source Image Index"),
gr.Slider(0, image_size - 1, step=1, value=image_size // 2, label="X Coordinate"),
gr.Slider(0, image_size - 1, step=1, value=image_size // 2, label="Y Coordinate"),
input_image
],
outputs="plot",
live=True,
)
# examples
gr.Markdown("# Examples")
gr.Examples(
examples=[
["resources/examples/2488.jpg"],
["resources/examples/2899.jpg"]
],
inputs=[input_image],
)
# JavaScriptコードをロード
demo.launch()
|