Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt = prompt, | |
width = width, | |
height = height, | |
num_inference_steps = num_inference_steps, | |
generator = generator, | |
guidance_scale=0.0 | |
).images[0] | |
return image, seed | |
def create_flux_tab(image_input): | |
examples = [ | |
"a tiny astronaut hatching from an egg on the moon", | |
"a cat holding a sign that says hello world", | |
"an anime illustration of a wiener schnitzel", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
with gr.Blocks(css=css) as flux_demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f"""# FLUX.1 [schnell]""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Row(): | |
use_in_text2lipsync_button = gr.Button("์ด ์ด๋ฏธ์ง๋ฅผ Txt to Lipsync ํญ์์ ์ฌ์ฉํ๊ธฐ") # ์๋ก์ด ๋ฒํผ ์ถ๊ฐ | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=4, | |
) | |
gr.Examples( | |
examples = examples, | |
fn = infer, | |
inputs = [prompt], | |
outputs = [result, seed], | |
cache_examples="lazy" | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn = infer, | |
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps], | |
outputs = [result, seed] | |
) | |
# ์๋ก์ด ๋ฒํผ ํด๋ฆญ ์ด๋ฒคํธ ์ ์ | |
use_in_text2lipsync_button.click( | |
fn=lambda img: img, # ๊ฐ๋จํ ๋๋ค ํจ์๋ฅผ ์ฌ์ฉํ์ฌ ์ด๋ฏธ์ง๋ฅผ ๊ทธ๋๋ก ์ ๋ฌ | |
inputs=[result], # ์์ฑ๋ ์ด๋ฏธ์ง๋ฅผ ์ ๋ ฅ์ผ๋ก ์ฌ์ฉ | |
outputs=[image_input] # Text to LipSync ํญ์ image_input์ ์ ๋ฐ์ดํธ | |
) | |
return flux_demo | |
# demo.launch() |