Spaces:
Running
Running
File size: 18,069 Bytes
de68d44 a104d3f b9be4e6 523fb10 de68d44 b9be4e6 7fdc8e2 b9be4e6 31c3841 b9be4e6 de68d44 0540af1 0ce38bd de68d44 0ce38bd de68d44 0ce38bd de68d44 0ce38bd de68d44 0ce38bd de68d44 0ce38bd de68d44 5089b6a de68d44 0958530 de68d44 5089b6a de68d44 b9be4e6 51779c3 de68d44 2845f22 de68d44 2845f22 de68d44 359b8a2 de68d44 2845f22 de68d44 2845f22 de68d44 359b8a2 de68d44 5089b6a de68d44 5089b6a de68d44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
import os
import uuid
import glob
import shutil
from pathlib import Path
from multiprocessing.pool import Pool
import gradio as gr
import torch
from torchvision import transforms
import cv2
import numpy as np
from PIL import Image
import tqdm
from modules.networks.faceshifter import FSGenerator
from inference.alignment import norm_crop, norm_crop_with_M, paste_back
from inference.utils import save, get_5_from_98, get_detector, get_lmk
from third_party.PIPNet.lib.tools import get_lmk_model, demo_image
from inference.landmark_smooth import kalman_filter_landmark, savgol_filter_landmark
from inference.tricks import Trick
make_abs_path = lambda fn: os.path.abspath(os.path.join(os.path.dirname(os.path.realpath(__file__)), fn))
fs_model_name = 'faceshifter'
in_size = 256
mouth_net_param = {
"use": True,
"feature_dim": 128,
"crop_param": (28, 56, 84, 112),
"weight_path": make_abs_path("./weights/arcface/mouth_net_28_56_84_112.pth"),
}
trick = Trick()
T = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(0.5, 0.5),
]
)
tensor2pil_transform = transforms.ToPILImage()
def extract_generator(ckpt: str, pt: str):
print(f'[extract_generator] loading ckpt...')
from trainer.faceshifter.faceshifter_pl import FaceshifterPL512, FaceshifterPL
import yaml
with open(make_abs_path('../../trainer/faceshifter/config.yaml'), 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
config['mouth_net'] = mouth_net_param
if in_size == 256:
net = FaceshifterPL(n_layers=3, num_D=3, config=config)
elif in_size == 512:
net = FaceshifterPL512(n_layers=3, num_D=3, config=config, verbose=False)
else:
raise ValueError('Not supported in_size.')
checkpoint = torch.load(ckpt, map_location="cpu", )
net.load_state_dict(checkpoint["state_dict"], strict=False)
net.eval()
G = net.generator
torch.save(G.state_dict(), pt)
print(f'[extract_generator] extracted from {ckpt}, pth saved to {pt}')
''' load model '''
if fs_model_name == 'faceshifter':
pt_path = make_abs_path("./weights/extracted/G_mouth1_t38_post.pth")
# pt_path = make_abs_path("../ffplus/extracted_ckpt/G_mouth1_t512_6.pth")
# ckpt_path = "/apdcephfs/share_1290939/gavinyuan/out/triplet512_6/epoch=3-step=128999.ckpt"
# pt_path = make_abs_path("../ffplus/extracted_ckpt/G_mouth1_t512_4.pth")
# ckpt_path = "/apdcephfs/share_1290939/gavinyuan/out/triplet512_4/epoch=2-step=185999.ckpt"
if not os.path.exists(pt_path) or 't512' in pt_path:
extract_generator(ckpt_path, pt_path)
fs_model = FSGenerator(
make_abs_path("./weights/arcface/ms1mv3_arcface_r100_fp16/backbone.pth"),
mouth_net_param=mouth_net_param,
in_size=in_size,
downup=in_size == 512,
)
fs_model.load_state_dict(torch.load(pt_path, "cpu"), strict=True)
fs_model.eval()
@torch.no_grad()
def infer_batch_to_img(i_s, i_t, post: bool = False):
i_r = fs_model(i_s, i_t)[0] # x, id_vector, att
if post:
target_hair_mask = trick.get_any_mask(i_t, par=[0, 17])
target_hair_mask = trick.smooth_mask(target_hair_mask)
i_r = target_hair_mask * i_t + (target_hair_mask * (-1) + 1) * i_r
i_r = trick.finetune_mouth(i_s, i_t, i_r) if in_size == 256 else i_r
img_r = trick.tensor_to_arr(i_r)[0]
return img_r
elif fs_model_name == 'simswap_triplet' or fs_model_name == 'simswap_vanilla':
from modules.networks.simswap import Generator_Adain_Upsample
sw_model = Generator_Adain_Upsample(
input_nc=3, output_nc=3, latent_size=512, n_blocks=9, deep=False,
mouth_net_param=mouth_net_param
)
if fs_model_name == 'simswap_triplet':
pt_path = make_abs_path("../ffplus/extracted_ckpt/G_mouth1_st5.pth")
ckpt_path = make_abs_path("/apdcephfs/share_1290939/gavinyuan/out/"
"simswap_triplet_5/epoch=12-step=782999.ckpt")
elif fs_model_name == 'simswap_vanilla':
pt_path = make_abs_path("../ffplus/extracted_ckpt/G_tmp_sv4_off.pth")
ckpt_path = make_abs_path("/apdcephfs/share_1290939/gavinyuan/out/"
"simswap_vanilla_4/epoch=694-step=1487999.ckpt")
else:
pt_path = None
ckpt_path = None
sw_model.load_state_dict(torch.load(pt_path, "cpu"), strict=False)
sw_model.eval()
fs_model = sw_model
from trainer.simswap.simswap_pl import SimSwapPL
import yaml
with open(make_abs_path('../../trainer/simswap/config.yaml'), 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
config['mouth_net'] = mouth_net_param
net = SimSwapPL(config=config, use_official_arc='off' in pt_path)
checkpoint = torch.load(ckpt_path, map_location="cpu")
net.load_state_dict(checkpoint["state_dict"], strict=False)
net.eval()
sw_mouth_net = net.mouth_net # maybe None
sw_netArc = net.netArc
fs_model = fs_model.cuda()
sw_mouth_net = sw_mouth_net.cuda() if sw_mouth_net is not None else sw_mouth_net
sw_netArc = sw_netArc.cuda()
@torch.no_grad()
def infer_batch_to_img(i_s, i_t, post: bool = False):
i_r = fs_model(source=i_s, target=i_t, net_arc=sw_netArc, mouth_net=sw_mouth_net,)
if post:
target_hair_mask = trick.get_any_mask(i_t, par=[0, 17])
target_hair_mask = trick.smooth_mask(target_hair_mask)
i_r = target_hair_mask * i_t + (target_hair_mask * (-1) + 1) * i_r
i_r = i_r.clamp(-1, 1)
i_r = trick.tensor_to_arr(i_r)[0]
return i_r
elif fs_model_name == 'simswap_official':
from simswap.image_infer import SimSwapOfficialImageInfer
fs_model = SimSwapOfficialImageInfer()
pt_path = 'Simswap Official'
mouth_net_param = {
"use": False
}
@torch.no_grad()
def infer_batch_to_img(i_s, i_t):
i_r = fs_model.image_infer(source_tensor=i_s, target_tensor=i_t)
i_r = i_r.clamp(-1, 1)
return i_r
else:
raise ValueError('Not supported fs_model_name.')
print(f'[demo] model loaded from {pt_path}')
def swap_image(
source_image,
target_path,
out_path,
transform,
G,
align_source="arcface",
align_target="set1",
gpu_mode=True,
paste_back=True,
use_post=False,
use_gpen=False,
in_size=256,
):
name = target_path.split("/")[-1]
name = "out_" + name
if isinstance(G, torch.nn.Module):
G.eval()
if gpu_mode:
G = G.cuda()
device = torch.device(0) if gpu_mode else torch.device('cpu')
source_img = np.array(Image.open(source_image).convert("RGB"))
net, detector = get_lmk_model()
lmk = get_5_from_98(demo_image(source_img, net, detector, device=device)[0])
source_img = norm_crop(source_img, lmk, in_size, mode=align_source, borderValue=0.0)
source_img = transform(source_img).unsqueeze(0)
target = np.array(Image.open(target_path).convert("RGB"))
original_target = target.copy()
lmk = get_5_from_98(demo_image(target, net, detector, device=device)[0])
target, M = norm_crop_with_M(target, lmk, in_size, mode=align_target, borderValue=0.0)
target = transform(target).unsqueeze(0)
if gpu_mode:
target = target.cuda()
source_img = source_img.cuda()
cv2.imwrite('cropped_source.png', trick.tensor_to_arr(source_img)[0, :, :, ::-1])
cv2.imwrite('cropped_target.png', trick.tensor_to_arr(target)[0, :, :, ::-1])
# both inputs should be 512
result = infer_batch_to_img(source_img, target, post=use_post)
cv2.imwrite('result.png', result[:, :, ::-1])
os.makedirs(out_path, exist_ok=True)
Image.fromarray(result.astype(np.uint8)).save(os.path.join(out_path, name))
save((result, M, original_target, os.path.join(out_path, "paste_back_" + name), None),
trick=trick, use_post=use_gpen)
def process_video(
source_image,
target_path,
out_path,
transform,
G,
align_source="arcface",
align_target="set1",
gpu_mode=True,
frames=9999999,
use_tddfav2=False,
landmark_smooth="kalman",
):
if isinstance(G, torch.nn.Module):
G.eval()
if gpu_mode:
G = G.cuda()
device = torch.device(0) if gpu_mode else torch.device('cpu')
''' Target video to frames (.png) '''
fps = 25.0
if not os.path.isdir(target_path):
vidcap = cv2.VideoCapture(target_path)
fps = vidcap.get(cv2.CAP_PROP_FPS)
try:
for match in glob.glob(os.path.join("./tmp/", "*.png")):
os.remove(match)
for match in glob.glob(os.path.join(out_path, "*.png")):
os.remove(match)
except Exception as e:
print(e)
os.makedirs("./tmp/", exist_ok=True)
os.system(
f"ffmpeg -i {target_path} -qscale:v 1 -qmin 1 -qmax 1 -vsync 0 ./tmp/frame_%05d.png"
)
target_path = "./tmp/"
globbed_images = sorted(glob.glob(os.path.join(target_path, "*.png")))
''' Get target landmarks '''
print('[Extracting target landmarks...]')
if not use_tddfav2:
align_net, align_detector = get_lmk_model()
else:
align_net, align_detector = get_detector(gpu_mode=gpu_mode)
target_lmks = []
for frame_path in tqdm.tqdm(globbed_images):
target = np.array(Image.open(frame_path).convert("RGB"))
lmk = demo_image(target, align_net, align_detector, device=device)
lmk = lmk[0]
target_lmks.append(lmk)
''' Landmark smoothing '''
target_lmks = np.array(target_lmks, np.float32) # (#frames, 98, 2)
if landmark_smooth == 'kalman':
target_lmks = kalman_filter_landmark(target_lmks,
process_noise=0.01,
measure_noise=0.01).astype(np.int)
elif landmark_smooth == 'savgol':
target_lmks = savgol_filter_landmark(target_lmks).astype(np.int)
elif landmark_smooth == 'cancel':
target_lmks = target_lmks.astype(np.int)
else:
raise KeyError('Not supported landmark_smooth choice')
''' Crop source image '''
source_img = np.array(Image.open(source_image).convert("RGB"))
if not use_tddfav2:
lmk = get_5_from_98(demo_image(source_img, align_net, align_detector, device=device)[0])
else:
lmk = get_lmk(source_img, align_net, align_detector)
source_img = norm_crop(source_img, lmk, in_size, mode=align_source, borderValue=0.0)
source_img = transform(source_img).unsqueeze(0)
if gpu_mode:
source_img = source_img.cuda()
''' Process by frames '''
targets = []
t_facial_masks = []
Ms = []
original_frames = []
names = []
count = 0
for image in tqdm.tqdm(globbed_images):
names.append(os.path.join(out_path, Path(image).name))
target = np.array(Image.open(image).convert("RGB"))
original_frames.append(target)
''' Crop target frames '''
lmk = get_5_from_98(target_lmks[count])
target, M = norm_crop_with_M(target, lmk, in_size, mode=align_target, borderValue=0.0)
target = transform(target).unsqueeze(0) # in [-1,1]
if gpu_mode:
target = target.cuda()
''' Finetune paste masks '''
target_facial_mask = trick.get_any_mask(target,
par=[1, 2, 3, 4, 5, 6, 10, 11, 12, 13]).squeeze() # in [0,1]
target_facial_mask = target_facial_mask.cpu().numpy().astype(np.float)
target_facial_mask = trick.finetune_mask(target_facial_mask, target_lmks) # in [0,1]
t_facial_masks.append(target_facial_mask)
''' Face swapping '''
with torch.no_grad():
if 'faceshifter' in fs_model_name:
output = G(source_img, target)
target_hair_mask = trick.get_any_mask(target, par=[0, 17])
target_hair_mask = trick.smooth_mask(target_hair_mask)
output = target_hair_mask * target + (target_hair_mask * (-1) + 1) * output
output = trick.finetune_mouth(source_img, target, output)
elif 'simswap' in fs_model_name and 'official' not in fs_model_name:
output = fs_model(source=source_img, target=target,
net_arc=sw_netArc, mouth_net=sw_mouth_net,)
if 'vanilla' not in fs_model_name:
target_hair_mask = trick.get_any_mask(target, par=[0, 17])
target_hair_mask = trick.smooth_mask(target_hair_mask)
output = target_hair_mask * target + (target_hair_mask * (-1) + 1) * output
output = trick.finetune_mouth(source_img, target, output)
output = output.clamp(-1, 1)
elif 'simswap_official' in fs_model_name:
output = fs_model.image_infer(source_tensor=source_img, target_tensor=target)
output = output.clamp(-1, 1)
if isinstance(output, tuple):
target = output[0][0] * 0.5 + 0.5
else:
target = output[0] * 0.5 + 0.5
targets.append(np.array(tensor2pil_transform(target)))
Ms.append(M)
count += 1
if count > frames:
break
os.makedirs(out_path, exist_ok=True)
return targets, t_facial_masks, Ms, original_frames, names, fps
def swap_image_gr(img1, img2, use_post=False, use_gpen=False, ):
root_dir = make_abs_path("./online_data")
req_id = uuid.uuid1().hex
data_dir = os.path.join(root_dir, req_id)
os.makedirs(data_dir, exist_ok=True)
source_path = os.path.join(data_dir, "source.png")
target_path = os.path.join(data_dir, "target.png")
filename = "paste_back_out_target.png"
out_path = os.path.join(data_dir, filename)
cv2.imwrite(source_path, img1[:, :, ::-1])
cv2.imwrite(target_path, img2[:, :, ::-1])
swap_image(
source_path,
target_path,
data_dir,
T,
fs_model,
gpu_mode=use_gpu,
align_target='ffhq',
align_source='ffhq',
use_post=use_post,
use_gpen=use_gpen,
in_size=in_size,
)
out = cv2.imread(out_path)[..., ::-1]
return out
def swap_video_gr(img1, target_path, frames=9999999):
root_dir = make_abs_path("./online_data")
req_id = uuid.uuid1().hex
data_dir = os.path.join(root_dir, req_id)
os.makedirs(data_dir, exist_ok=True)
source_path = os.path.join(data_dir, "source.png")
cv2.imwrite(source_path, img1[:, :, ::-1])
out_dir = os.path.join(data_dir, "out")
out_name = "output.mp4"
targets, t_facial_masks, Ms, original_frames, names, fps = process_video(
source_path,
target_path,
out_dir,
T,
fs_model,
gpu_mode=use_gpu,
frames=frames,
align_target='ffhq',
align_source='ffhq',
use_tddfav2=False,
)
pool_process = 170
audio = True
concat = False
if pool_process <= 1:
for target, M, original_target, name, t_facial_mask in tqdm.tqdm(
zip(targets, Ms, original_frames, names, t_facial_masks)
):
if M is None or target is None:
Image.fromarray(original_target.astype(np.uint8)).save(name)
continue
Image.fromarray(paste_back(np.array(target), M, original_target, t_facial_mask)).save(name)
else:
with Pool(pool_process) as pool:
pool.map(save, zip(targets, Ms, original_frames, names, t_facial_masks))
video_save_path = os.path.join(out_dir, out_name)
if audio:
print("use audio")
os.system(
f"ffmpeg -y -r {fps} -i {out_dir}/frame_%05d.png -i {target_path}"
f" -map 0:v:0 -map 1:a:0? -c:a copy -c:v libx264 -r {fps} -crf 10 -pix_fmt yuv420p {video_save_path}"
)
else:
print("no audio")
os.system(
f"ffmpeg -y -r {fps} -i ./tmp/frame_%05d.png "
f"-c:v libx264 -r {fps} -crf 10 -pix_fmt yuv420p {video_save_path}"
)
# ffmpeg -i left.mp4 -i right.mp4 -filter_complex hstack output.mp4
if concat:
concat_video_save_path = os.path.join(out_dir, "concat_" + out_name)
os.system(
f"ffmpeg -y -i {target_path} -i {video_save_path} -filter_complex hstack {concat_video_save_path}"
)
# delete tmp file
shutil.rmtree("./tmp/")
for match in glob.glob(os.path.join(out_dir, "*.png")):
os.remove(match)
print(video_save_path)
return video_save_path
if __name__ == "__main__":
use_gpu = torch.cuda.is_available()
with gr.Blocks() as demo:
gr.Markdown("SuperSwap")
with gr.Tab("Image"):
with gr.Row():
with gr.Column(scale=3):
image1_input = gr.Image(label='source')
image2_input = gr.Image(label='target')
use_post = gr.Checkbox(label="Post-Process")
use_gpen = gr.Checkbox(label="Super Resolution")
with gr.Column(scale=2):
image_output = gr.Image()
image_button = gr.Button("Run: Face Swapping")
with gr.Tab("Video"):
with gr.Row():
with gr.Column(scale=3):
image3_input = gr.Image(label='source')
video_input = gr.Video(label='target')
with gr.Column(scale=2):
video_output = gr.Video()
video_button = gr.Button("Run: Face Swapping")
image_button.click(
swap_image_gr,
inputs=[image1_input, image2_input, use_post, use_gpen],
outputs=image_output,
)
video_button.click(
swap_video_gr,
inputs=[image3_input, video_input],
outputs=video_output,
)
demo.launch(server_name="0.0.0.0", server_port=7860)
|