File size: 17,898 Bytes
de68d44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a104d3f
b9be4e6
 
 
 
523fb10
de68d44
b9be4e6
 
 
 
 
 
 
 
 
 
7fdc8e2
b9be4e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31c3841
b9be4e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de68d44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9be4e6
51779c3
de68d44
 
 
 
2845f22
de68d44
2845f22
 
 
 
de68d44
 
 
 
2845f22
de68d44
2845f22
 
de68d44
 
 
 
 
b9be4e6
de68d44
 
 
 
b9be4e6
de68d44
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
import os
import uuid
import glob
import shutil
from pathlib import Path
from multiprocessing.pool import Pool

import gradio as gr
import torch
from torchvision import transforms

import cv2
import numpy as np
from PIL import Image
import tqdm

from modules.networks.faceshifter import FSGenerator
from inference.alignment import norm_crop, norm_crop_with_M, paste_back
from inference.utils import save, get_5_from_98, get_detector, get_lmk
from third_party.PIPNet.lib.tools import get_lmk_model, demo_image
from inference.landmark_smooth import kalman_filter_landmark, savgol_filter_landmark
from inference.tricks import Trick

make_abs_path = lambda fn: os.path.abspath(os.path.join(os.path.dirname(os.path.realpath(__file__)), fn))


fs_model_name = 'faceshifter'
in_size = 256

mouth_net_param = {
    "use": True,
    "feature_dim": 128,
    "crop_param": (28, 56, 84, 112),
    "weight_path": make_abs_path("./weights/arcface/mouth_net_28_56_84_112.pth"),
}
trick = Trick()

T = transforms.Compose(
        [
            transforms.ToTensor(),
            transforms.Normalize(0.5, 0.5),
        ]
    )
tensor2pil_transform = transforms.ToPILImage()


def extract_generator(ckpt: str, pt: str):
    print(f'[extract_generator] loading ckpt...')
    from trainer.faceshifter.faceshifter_pl import FaceshifterPL512, FaceshifterPL
    import yaml
    with open(make_abs_path('../../trainer/faceshifter/config.yaml'), 'r') as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
    config['mouth_net'] = mouth_net_param

    if in_size == 256:
        net = FaceshifterPL(n_layers=3, num_D=3, config=config)
    elif in_size == 512:
        net = FaceshifterPL512(n_layers=3, num_D=3, config=config, verbose=False)
    else:
        raise ValueError('Not supported in_size.')
    checkpoint = torch.load(ckpt, map_location="cpu", )
    net.load_state_dict(checkpoint["state_dict"], strict=False)
    net.eval()

    G = net.generator
    torch.save(G.state_dict(), pt)
    print(f'[extract_generator] extracted from {ckpt}, pth saved to {pt}')


''' load model '''
if fs_model_name == 'faceshifter':
    pt_path = make_abs_path("./weights/extracted/G_mouth1_t38_post.pth")
    # pt_path = make_abs_path("../ffplus/extracted_ckpt/G_mouth1_t512_6.pth")
    # ckpt_path = "/apdcephfs/share_1290939/gavinyuan/out/triplet512_6/epoch=3-step=128999.ckpt"
    # pt_path = make_abs_path("../ffplus/extracted_ckpt/G_mouth1_t512_4.pth")
    # ckpt_path = "/apdcephfs/share_1290939/gavinyuan/out/triplet512_4/epoch=2-step=185999.ckpt"
    if not os.path.exists(pt_path) or 't512' in pt_path:
        extract_generator(ckpt_path, pt_path)
    fs_model = FSGenerator(
        make_abs_path("./weights/arcface/ms1mv3_arcface_r100_fp16/backbone.pth"),
        mouth_net_param=mouth_net_param,
        in_size=in_size,
        downup=in_size == 512,
    )
    fs_model.load_state_dict(torch.load(pt_path, "cpu"), strict=True)
    fs_model.eval()

    @torch.no_grad()
    def infer_batch_to_img(i_s, i_t, post: bool = False):
        i_r = fs_model(i_s, i_t)[0]  # x, id_vector, att

        if post:
            target_hair_mask = trick.get_any_mask(i_t, par=[0, 17])
            target_hair_mask = trick.smooth_mask(target_hair_mask)
            i_r = target_hair_mask * i_t + (target_hair_mask * (-1) + 1) * i_r
            i_r = trick.finetune_mouth(i_s, i_t, i_r) if in_size == 256 else i_r

        img_r = trick.tensor_to_arr(i_r)[0]
        return img_r

elif fs_model_name == 'simswap_triplet' or fs_model_name == 'simswap_vanilla':
    from modules.networks.simswap import Generator_Adain_Upsample
    sw_model = Generator_Adain_Upsample(
        input_nc=3, output_nc=3, latent_size=512, n_blocks=9, deep=False,
        mouth_net_param=mouth_net_param
    )
    if fs_model_name == 'simswap_triplet':
        pt_path = make_abs_path("../ffplus/extracted_ckpt/G_mouth1_st5.pth")
        ckpt_path = make_abs_path("/apdcephfs/share_1290939/gavinyuan/out/"
                                  "simswap_triplet_5/epoch=12-step=782999.ckpt")
    elif fs_model_name == 'simswap_vanilla':
        pt_path = make_abs_path("../ffplus/extracted_ckpt/G_tmp_sv4_off.pth")
        ckpt_path = make_abs_path("/apdcephfs/share_1290939/gavinyuan/out/"
                                  "simswap_vanilla_4/epoch=694-step=1487999.ckpt")
    else:
        pt_path = None
        ckpt_path = None
    sw_model.load_state_dict(torch.load(pt_path, "cpu"), strict=False)
    sw_model.eval()
    fs_model = sw_model

    from trainer.simswap.simswap_pl import SimSwapPL
    import yaml
    with open(make_abs_path('../../trainer/simswap/config.yaml'), 'r') as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
    config['mouth_net'] = mouth_net_param
    net = SimSwapPL(config=config, use_official_arc='off' in pt_path)

    checkpoint = torch.load(ckpt_path, map_location="cpu")
    net.load_state_dict(checkpoint["state_dict"], strict=False)
    net.eval()
    sw_mouth_net = net.mouth_net  # maybe None
    sw_netArc = net.netArc
    fs_model = fs_model.cuda()
    sw_mouth_net = sw_mouth_net.cuda() if sw_mouth_net is not None else sw_mouth_net
    sw_netArc = sw_netArc.cuda()

    @torch.no_grad()
    def infer_batch_to_img(i_s, i_t, post: bool = False):
        i_r = fs_model(source=i_s, target=i_t, net_arc=sw_netArc, mouth_net=sw_mouth_net,)
        if post:
            target_hair_mask = trick.get_any_mask(i_t, par=[0, 17])
            target_hair_mask = trick.smooth_mask(target_hair_mask)
            i_r = target_hair_mask * i_t + (target_hair_mask * (-1) + 1) * i_r
        i_r = i_r.clamp(-1, 1)
        i_r = trick.tensor_to_arr(i_r)[0]
        return i_r

elif fs_model_name == 'simswap_official':
    from simswap.image_infer import SimSwapOfficialImageInfer
    fs_model = SimSwapOfficialImageInfer()
    pt_path = 'Simswap Official'
    mouth_net_param = {
        "use": False
    }

    @torch.no_grad()
    def infer_batch_to_img(i_s, i_t):
        i_r = fs_model.image_infer(source_tensor=i_s, target_tensor=i_t)
        i_r = i_r.clamp(-1, 1)
        return i_r

else:
    raise ValueError('Not supported fs_model_name.')


print(f'[demo] model loaded from {pt_path}')


def swap_image(
    source_image,
    target_path,
    out_path,
    transform,
    G,
    align_source="arcface",
    align_target="set1",
    gpu_mode=True,
    paste_back=True,
    use_post=False,
    use_gpen=False,
    in_size=256,
):
    name = target_path.split("/")[-1]
    name = "out_" + name
    if isinstance(G, torch.nn.Module):
        G.eval()
        if gpu_mode:
            G = G.cuda()
    source_img = np.array(Image.open(source_image).convert("RGB"))
    net, detector = get_lmk_model()
    lmk = get_5_from_98(demo_image(source_img, net, detector)[0])
    source_img = norm_crop(source_img, lmk, in_size, mode=align_source, borderValue=0.0)
    source_img = transform(source_img).unsqueeze(0)

    target = np.array(Image.open(target_path).convert("RGB"))
    original_target = target.copy()
    lmk = get_5_from_98(demo_image(target, net, detector)[0])
    target, M = norm_crop_with_M(target, lmk, in_size, mode=align_target, borderValue=0.0)
    target = transform(target).unsqueeze(0)
    if gpu_mode:
        target = target.cuda()
        source_img = source_img.cuda()

    cv2.imwrite('cropped_source.png', trick.tensor_to_arr(source_img)[0, :, :, ::-1])
    cv2.imwrite('cropped_target.png', trick.tensor_to_arr(target)[0, :, :, ::-1])

    # both inputs should be 512
    result = infer_batch_to_img(source_img, target, post=use_post)

    cv2.imwrite('result.png', result[:, :, ::-1])

    os.makedirs(out_path, exist_ok=True)
    Image.fromarray(result.astype(np.uint8)).save(os.path.join(out_path, name))
    save((result, M, original_target, os.path.join(out_path, "paste_back_" + name), None),
         trick=trick, use_post=use_gpen)


def process_video(
    source_image,
    target_path,
    out_path,
    transform,
    G,
    align_source="arcface",
    align_target="set1",
    gpu_mode=True,
    frames=9999999,
    use_tddfav2=False,
    landmark_smooth="kalman",
):
    if isinstance(G, torch.nn.Module):
        G.eval()
        if gpu_mode:
            G = G.cuda()
    ''' Target video to frames (.png) '''
    fps = 25.0
    if not os.path.isdir(target_path):
        vidcap = cv2.VideoCapture(target_path)
        fps = vidcap.get(cv2.CAP_PROP_FPS)
        try:
            for match in glob.glob(os.path.join("./tmp/", "*.png")):
                os.remove(match)
            for match in glob.glob(os.path.join(out_path, "*.png")):
                os.remove(match)
        except Exception as e:
            print(e)
        os.makedirs("./tmp/", exist_ok=True)
        os.system(
            f"ffmpeg -i {target_path} -qscale:v 1 -qmin 1 -qmax 1 -vsync 0  ./tmp/frame_%05d.png"
        )
        target_path = "./tmp/"
    globbed_images = sorted(glob.glob(os.path.join(target_path, "*.png")))
    ''' Get target landmarks '''
    print('[Extracting target landmarks...]')
    if not use_tddfav2:
        align_net, align_detector = get_lmk_model()
    else:
        align_net, align_detector = get_detector(gpu_mode=gpu_mode)
    target_lmks = []
    for frame_path in tqdm.tqdm(globbed_images):
        target = np.array(Image.open(frame_path).convert("RGB"))
        lmk = demo_image(target, align_net, align_detector)
        lmk = lmk[0]
        target_lmks.append(lmk)
    ''' Landmark smoothing '''
    target_lmks = np.array(target_lmks, np.float32)  # (#frames, 98, 2)
    if landmark_smooth == 'kalman':
        target_lmks = kalman_filter_landmark(target_lmks,
                                             process_noise=0.01,
                                             measure_noise=0.01).astype(np.int)
    elif landmark_smooth == 'savgol':
        target_lmks = savgol_filter_landmark(target_lmks).astype(np.int)
    elif landmark_smooth == 'cancel':
        target_lmks = target_lmks.astype(np.int)
    else:
        raise KeyError('Not supported landmark_smooth choice')
    ''' Crop source image '''
    source_img = np.array(Image.open(source_image).convert("RGB"))
    if not use_tddfav2:
        lmk = get_5_from_98(demo_image(source_img, align_net, align_detector)[0])
    else:
        lmk = get_lmk(source_img, align_net, align_detector)
    source_img = norm_crop(source_img, lmk, in_size, mode=align_source, borderValue=0.0)
    source_img = transform(source_img).unsqueeze(0)
    if gpu_mode:
        source_img = source_img.cuda()
    ''' Process by frames '''
    targets = []
    t_facial_masks = []
    Ms = []
    original_frames = []
    names = []
    count = 0
    for image in tqdm.tqdm(globbed_images):
        names.append(os.path.join(out_path, Path(image).name))
        target = np.array(Image.open(image).convert("RGB"))
        original_frames.append(target)
        ''' Crop target frames '''
        lmk = get_5_from_98(target_lmks[count])
        target, M = norm_crop_with_M(target, lmk, in_size, mode=align_target, borderValue=0.0)
        target = transform(target).unsqueeze(0)  # in [-1,1]
        if gpu_mode:
            target = target.cuda()
        ''' Finetune paste masks '''
        target_facial_mask = trick.get_any_mask(target,
                                                par=[1, 2, 3, 4, 5, 6, 10, 11, 12, 13]).squeeze()  # in [0,1]
        target_facial_mask = target_facial_mask.cpu().numpy().astype(np.float)
        target_facial_mask = trick.finetune_mask(target_facial_mask, target_lmks)  # in [0,1]
        t_facial_masks.append(target_facial_mask)
        ''' Face swapping '''
        with torch.no_grad():
            if 'faceshifter' in fs_model_name:
                output = G(source_img, target)
                target_hair_mask = trick.get_any_mask(target, par=[0, 17])
                target_hair_mask = trick.smooth_mask(target_hair_mask)
                output = target_hair_mask * target + (target_hair_mask * (-1) + 1) * output
                output = trick.finetune_mouth(source_img, target, output)
            elif 'simswap' in fs_model_name and 'official' not in fs_model_name:
                output = fs_model(source=source_img, target=target,
                                  net_arc=sw_netArc, mouth_net=sw_mouth_net,)
                if 'vanilla' not in fs_model_name:
                    target_hair_mask = trick.get_any_mask(target, par=[0, 17])
                    target_hair_mask = trick.smooth_mask(target_hair_mask)
                    output = target_hair_mask * target + (target_hair_mask * (-1) + 1) * output
                    output = trick.finetune_mouth(source_img, target, output)
                output = output.clamp(-1, 1)
            elif 'simswap_official' in fs_model_name:
                output = fs_model.image_infer(source_tensor=source_img, target_tensor=target)
                output = output.clamp(-1, 1)
            if isinstance(output, tuple):
                target = output[0][0] * 0.5 + 0.5
            else:
                target = output[0] * 0.5 + 0.5
        targets.append(np.array(tensor2pil_transform(target)))
        Ms.append(M)
        count += 1
        if count > frames:
            break
    os.makedirs(out_path, exist_ok=True)
    return targets, t_facial_masks, Ms, original_frames, names, fps


def swap_image_gr(img1, img2, use_post=False, use_gpen=False, gpu_mode=True):
    root_dir = make_abs_path("./online_data")
    req_id = uuid.uuid1().hex
    data_dir = os.path.join(root_dir, req_id)
    os.makedirs(data_dir, exist_ok=True)
    source_path = os.path.join(data_dir, "source.png")
    target_path = os.path.join(data_dir, "target.png")
    filename = "paste_back_out_target.png"
    out_path = os.path.join(data_dir, filename)
    cv2.imwrite(source_path, img1[:, :, ::-1])
    cv2.imwrite(target_path, img2[:, :, ::-1])
    swap_image(
        source_path,
        target_path,
        data_dir,
        T,
        fs_model,
        gpu_mode=gpu_mode,
        align_target='ffhq',
        align_source='ffhq',
        use_post=use_post,
        use_gpen=use_gpen,
        in_size=in_size,
    )
    out = cv2.imread(out_path)[..., ::-1]
    return out


def swap_video_gr(img1, target_path, use_gpu=True, frames=9999999):
    root_dir = make_abs_path("./online_data")
    req_id = uuid.uuid1().hex
    data_dir = os.path.join(root_dir, req_id)
    os.makedirs(data_dir, exist_ok=True)
    source_path = os.path.join(data_dir, "source.png")
    cv2.imwrite(source_path, img1[:, :, ::-1])
    out_dir = os.path.join(data_dir, "out")
    out_name = "output.mp4"
    targets, t_facial_masks, Ms, original_frames, names, fps = process_video(
        source_path,
        target_path,
        out_dir,
        T,
        fs_model,
        gpu_mode=use_gpu,
        frames=frames,
        align_target='ffhq',
        align_source='ffhq',
        use_tddfav2=False,
    )

    pool_process = 170
    audio = True
    concat = False

    if pool_process <= 1:
        for target, M, original_target, name, t_facial_mask in tqdm.tqdm(
                zip(targets, Ms, original_frames, names, t_facial_masks)
        ):
            if M is None or target is None:
                Image.fromarray(original_target.astype(np.uint8)).save(name)
                continue
            Image.fromarray(paste_back(np.array(target), M, original_target, t_facial_mask)).save(name)
    else:
        with Pool(pool_process) as pool:
            pool.map(save, zip(targets, Ms, original_frames, names, t_facial_masks))

    video_save_path = os.path.join(out_dir, out_name)
    if audio:
        print("use audio")
        os.system(
            f"ffmpeg  -y -r {fps} -i {out_dir}/frame_%05d.png -i {target_path}"
            f" -map 0:v:0 -map 1:a:0? -c:a copy -c:v libx264 -r {fps} -crf 10 -pix_fmt yuv420p  {video_save_path}"
        )
    else:
        print("no audio")
        os.system(
            f"ffmpeg  -y -r {fps} -i ./tmp/frame_%05d.png "
            f"-c:v libx264 -r {fps} -crf 10 -pix_fmt yuv420p {video_save_path}"
        )
    # ffmpeg -i left.mp4 -i right.mp4 -filter_complex hstack output.mp4
    if concat:
        concat_video_save_path = os.path.join(out_dir, "concat_" + out_name)
        os.system(
            f"ffmpeg -y  -i {target_path}  -i {video_save_path} -filter_complex hstack {concat_video_save_path}"
        )
    # delete tmp file
    shutil.rmtree("./tmp/")
    for match in glob.glob(os.path.join(out_dir, "*.png")):
        os.remove(match)
    print(video_save_path)
    return video_save_path


if __name__ == "__main__":
    use_gpu = torch.cuda.is_available()

    with gr.Blocks() as demo:
        gr.Markdown("SuperSwap")

        with gr.Tab("Image"):
            with gr.Row():
                with gr.Column(scale=3):
                    image1_input = gr.Image(label='source')
                    image2_input = gr.Image(label='target')
                    use_post = gr.Checkbox(label="Post-Process")
                    use_gpen = gr.Checkbox(label="Super Resolution")
                with gr.Column(scale=2):
                    image_output = gr.Image()
                    image_button = gr.Button("换脸")
        with gr.Tab("Video"):
            with gr.Row():
                with gr.Column(scale=3):
                    image3_input = gr.Image(label='source')
                    video_input = gr.Video(label='target')
                with gr.Column(scale=2):
                    video_output = gr.Video()
                    video_button = gr.Button("换脸")
        image_button.click(
            swap_image_gr,
            inputs=[image1_input, image2_input, use_post, use_gpen, use_gpu],
            outputs=image_output,
        )
        video_button.click(
            swap_video_gr,
            inputs=[image3_input, video_input, use_gpu],
            outputs=video_output,
        )

    demo.launch(server_name="0.0.0.0", server_port=7860)