Spaces:
Running
Running
import cv2 | |
import numpy as np | |
from skimage import transform as trans | |
def get_center(points): | |
x = [p[0] for p in points] | |
y = [p[1] for p in points] | |
centroid = (sum(x) / len(points), sum(y) / len(points)) | |
return np.array([centroid]) | |
def extract_five_lmk(lmk): | |
x = lmk[..., :2] | |
left_eye = get_center(x[36:42]) | |
right_eye = get_center(x[42:48]) | |
nose = x[30:31] | |
left_mouth = x[48:49] | |
right_mouth = x[54:55] | |
x = np.concatenate([left_eye, right_eye, nose, left_mouth, right_mouth], axis=0) | |
return x | |
set1 = np.array( | |
[ | |
[41.125, 50.75], | |
[71.75, 49.4375], | |
[49.875, 73.0625], | |
[45.9375, 87.9375], | |
[70.4375, 87.9375], | |
], | |
dtype=np.float32, | |
) | |
arcface_src = np.array( | |
[ | |
[38.2946, 51.6963], | |
[73.5318, 51.5014], | |
[56.0252, 71.7366], | |
[41.5493, 92.3655], | |
[70.7299, 92.2041], | |
], | |
dtype=np.float32, | |
) | |
ffhq = np.array( | |
[ | |
[192.98138, 239.94708], | |
[318.90277, 240.1936], | |
[256.63416, 314.01935], | |
[201.26117, 371.41043], | |
[313.08905, 371.15118], | |
], | |
dtype=np.float32, | |
) | |
mtcnn = np.array( | |
[ | |
[40.95041, 52.341854], | |
[70.90203, 52.17619], | |
[56.02142, 69.376114], | |
[43.716904, 86.910675], | |
[68.52042, 86.77348], | |
], | |
dtype=np.float32, | |
) | |
arcface_src = np.expand_dims(arcface_src, axis=0) | |
set1 = np.expand_dims(set1, axis=0) | |
ffhq = np.expand_dims(ffhq, axis=0) | |
mtcnn = np.expand_dims(mtcnn, axis=0) | |
# lmk is prediction; src is template | |
def estimate_norm(lmk, image_size=112, mode="set1"): | |
assert lmk.shape == (5, 2) | |
tform = trans.SimilarityTransform() | |
lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1) | |
min_M = [] | |
min_index = [] | |
min_error = float("inf") | |
if mode == "arcface": | |
if image_size == 112: | |
src = arcface_src | |
else: | |
src = float(image_size) / 112 * arcface_src | |
elif mode == "set1": | |
if image_size == 112: | |
src = set1 | |
else: | |
src = float(image_size) / 112 * set1 | |
elif mode == "ffhq": | |
if image_size == 512: | |
src = ffhq | |
else: | |
src = float(image_size) / 512 * ffhq | |
elif mode == "mtcnn": | |
if image_size == 112: | |
src = mtcnn | |
else: | |
src = float(image_size) / 112 * mtcnn | |
else: | |
print("no mode like {}".format(mode)) | |
exit() | |
for i in np.arange(src.shape[0]): | |
tform.estimate(lmk, src[i]) | |
M = tform.params[0:2, :] | |
results = np.dot(M, lmk_tran.T) | |
results = results.T | |
error = np.sum(np.sqrt(np.sum((results - src[i]) ** 2, axis=1))) | |
# print(error) | |
if error < min_error: | |
min_error = error | |
min_M = M | |
min_index = i | |
return min_M, min_index | |
def estimate_norm_any(lmk_from, lmk_to, image_size=112): | |
tform = trans.SimilarityTransform() | |
lmk_tran = np.insert(lmk_from, 2, values=np.ones(5), axis=1) | |
min_M = [] | |
min_index = [] | |
min_error = float("inf") | |
src = lmk_to[np.newaxis, ...] | |
for i in np.arange(src.shape[0]): | |
tform.estimate(lmk_from, src[i]) | |
M = tform.params[0:2, :] | |
results = np.dot(M, lmk_tran.T) | |
results = results.T | |
error = np.sum(np.sqrt(np.sum((results - src[i]) ** 2, axis=1))) | |
# print(error) | |
if error < min_error: | |
min_error = error | |
min_M = M | |
min_index = i | |
return min_M, min_index | |
def norm_crop(img, landmark, image_size=112, mode="arcface", borderValue=0.0): | |
M, pose_index = estimate_norm(landmark, image_size, mode) | |
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=borderValue) | |
return warped | |
def norm_crop_with_M(img, landmark, image_size=112, mode="arcface", borderValue=0.0): | |
M, pose_index = estimate_norm(landmark, image_size, mode) | |
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=borderValue) | |
return warped, M | |
def square_crop(im, S): | |
if im.shape[0] > im.shape[1]: | |
height = S | |
width = int(float(im.shape[1]) / im.shape[0] * S) | |
scale = float(S) / im.shape[0] | |
else: | |
width = S | |
height = int(float(im.shape[0]) / im.shape[1] * S) | |
scale = float(S) / im.shape[1] | |
resized_im = cv2.resize(im, (width, height)) | |
det_im = np.zeros((S, S, 3), dtype=np.uint8) | |
det_im[: resized_im.shape[0], : resized_im.shape[1], :] = resized_im | |
return det_im, scale | |
def transform(data, center, output_size, scale, rotation): | |
scale_ratio = scale | |
rot = float(rotation) * np.pi / 180.0 | |
# translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio) | |
t1 = trans.SimilarityTransform(scale=scale_ratio) | |
cx = center[0] * scale_ratio | |
cy = center[1] * scale_ratio | |
t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy)) | |
t3 = trans.SimilarityTransform(rotation=rot) | |
t4 = trans.SimilarityTransform(translation=(output_size / 2, output_size / 2)) | |
t = t1 + t2 + t3 + t4 | |
M = t.params[0:2] | |
cropped = cv2.warpAffine(data, M, (output_size, output_size), borderValue=0.0) | |
return cropped, M | |
def trans_points2d(pts, M): | |
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) | |
for i in range(pts.shape[0]): | |
pt = pts[i] | |
new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32) | |
new_pt = np.dot(M, new_pt) | |
# print('new_pt', new_pt.shape, new_pt) | |
new_pts[i] = new_pt[0:2] | |
return new_pts | |
def trans_points3d(pts, M): | |
scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1]) | |
# print(scale) | |
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) | |
for i in range(pts.shape[0]): | |
pt = pts[i] | |
new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32) | |
new_pt = np.dot(M, new_pt) | |
# print('new_pt', new_pt.shape, new_pt) | |
new_pts[i][0:2] = new_pt[0:2] | |
new_pts[i][2] = pts[i][2] * scale | |
return new_pts | |
def trans_points(pts, M): | |
if pts.shape[1] == 2: | |
return trans_points2d(pts, M) | |
else: | |
return trans_points3d(pts, M) | |
def paste_back(img, mat, ori_img): | |
mat_rev = np.zeros([2, 3]) | |
div1 = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0] | |
mat_rev[0][0] = mat[1][1] / div1 | |
mat_rev[0][1] = -mat[0][1] / div1 | |
mat_rev[0][2] = -(mat[0][2] * mat[1][1] - mat[0][1] * mat[1][2]) / div1 | |
div2 = mat[0][1] * mat[1][0] - mat[0][0] * mat[1][1] | |
mat_rev[1][0] = mat[1][0] / div2 | |
mat_rev[1][1] = -mat[0][0] / div2 | |
mat_rev[1][2] = -(mat[0][2] * mat[1][0] - mat[0][0] * mat[1][2]) / div2 | |
img_shape = (ori_img.shape[1], ori_img.shape[0]) | |
img = cv2.warpAffine(img, mat_rev, img_shape) | |
img_white = np.full((256, 256), 255, dtype=float) | |
img_white = cv2.warpAffine(img_white, mat_rev, img_shape) | |
img_white[img_white > 20] = 255 | |
img_mask = img_white | |
kernel = np.ones((40, 40), np.uint8) | |
img_mask = cv2.erode(img_mask, kernel, iterations=2) | |
kernel_size = (20, 20) | |
blur_size = tuple(2 * j + 1 for j in kernel_size) | |
img_mask = cv2.GaussianBlur(img_mask, blur_size, 0) | |
img_mask /= 255 | |
img_mask = np.reshape(img_mask, [img_mask.shape[0], img_mask.shape[1], 1]) | |
ori_img = img_mask * img + (1 - img_mask) * ori_img | |
ori_img = ori_img.astype(np.uint8) | |
return ori_img | |