ImgCleaner / app.py
yizhangliu's picture
add 'save' button to download image for mobile devices
a006e4e
raw
history blame
15.8 kB
import gradio as gr
from PIL import Image
import numpy as np
import os,sys
import uuid
import torch
import cv2
import io
import multiprocessing
import random
import time
import imghdr
from loguru import logger
from share_btn import community_icon_html, loading_icon_html, download_icon_html, share_js
from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config
try:
torch._C._jit_override_can_fuse_on_cpu(False)
torch._C._jit_override_can_fuse_on_gpu(False)
torch._C._jit_set_texpr_fuser_enabled(False)
torch._C._jit_set_nvfuser_enabled(False)
except:
pass
from lama_cleaner.helper import (
load_img,
numpy_to_bytes,
resize_max_size,
)
NUM_THREADS = str(multiprocessing.cpu_count())
# fix libomp problem on windows https://github.com/Sanster/lama-cleaner/issues/56
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"
os.environ["OMP_NUM_THREADS"] = NUM_THREADS
os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS
os.environ["MKL_NUM_THREADS"] = NUM_THREADS
os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS
os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS
if os.environ.get("CACHE_DIR"):
os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"]
HF_TOKEN_SD = os.environ.get('HF_TOKEN_SD')
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f'device = {device}')
def read_content(file_path: str) -> str:
"""read the content of target file
"""
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
return content
def get_image_enhancer(scale = 2, device='cuda:0'):
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
from gfpgan import GFPGANer
realesrgan_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64,
num_block=23, num_grow_ch=32, scale=4
)
netscale = scale
model_realesrgan = 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth'
upsampler = RealESRGANer(
scale=netscale,
model_path=model_realesrgan,
model=realesrgan_model,
tile=0,
tile_pad=10,
pre_pad=0,
half=False if device=='cpu' else True,
device=device
)
model_GFPGAN = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth'
img_enhancer = GFPGANer(
model_path=model_GFPGAN,
upscale=scale,
arch='clean',
channel_multiplier=2,
bg_upsampler=upsampler,
device=device
)
return img_enhancer
image_enhancer = None
if sys.platform == 'linux' and 0==1:
image_enhancer = get_image_enhancer(scale = 1, device=device)
model = None
def model_process(image, mask, img_enhancer):
global model,image_enhancer
if mask.shape[0] == image.shape[1] and mask.shape[1] == image.shape[0] and mask.shape[0] != mask.shape[1]:
# rotate image
image = np.transpose(image[::-1, ...][:, ::-1], axes=(1, 0, 2))[::-1, ...]
original_shape = image.shape
interpolation = cv2.INTER_CUBIC
size_limit = 1080
if size_limit == "Original":
size_limit = max(image.shape)
else:
size_limit = int(size_limit)
config = Config(
ldm_steps=25,
ldm_sampler='plms',
zits_wireframe=True,
hd_strategy='Original',
hd_strategy_crop_margin=196,
hd_strategy_crop_trigger_size=1280,
hd_strategy_resize_limit=2048,
prompt='',
use_croper=False,
croper_x=0,
croper_y=0,
croper_height=512,
croper_width=512,
sd_mask_blur=5,
sd_strength=0.75,
sd_steps=50,
sd_guidance_scale=7.5,
sd_sampler='ddim',
sd_seed=42,
cv2_flag='INPAINT_NS',
cv2_radius=5,
)
if config.sd_seed == -1:
config.sd_seed = random.randint(1, 999999999)
logger.info(f"Origin image shape_0_: {original_shape} / {size_limit}")
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
logger.info(f"Resized image shape_1_: {image.shape}")
logger.info(f"mask image shape_0_: {mask.shape} / {type(mask)}")
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
logger.info(f"mask image shape_1_: {mask.shape} / {type(mask)}")
if model is None:
return None
res_np_img = model(image, mask, config)
torch.cuda.empty_cache()
image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, 'png')))
if image_enhancer is not None and img_enhancer:
start = time.time()
input_img_rgb = np.array(image)
input_img_bgr = input_img_rgb[...,[2,1,0]]
_, _, enhance_img = image_enhancer.enhance(input_img_bgr, has_aligned=False,
only_center_face=False, paste_back=True)
input_img_rgb = enhance_img[...,[2,1,0]]
img_enhance = Image.fromarray(np.uint8(input_img_rgb))
image = img_enhance
log_info = f"image_enhancer_: {(time.time() - start) * 1000}ms, {res_np_img.shape} "
logger.info(log_info)
return image # image
model = ModelManager(
name='lama',
device=device,
)
image_type = 'pil' # filepath'
def predict(input, img_enhancer):
if input is None:
return None
if image_type == 'filepath':
# input: {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'}
origin_image_bytes = open(input["image"], 'rb').read()
print(f'origin_image_bytes = ', type(origin_image_bytes), len(origin_image_bytes))
image, _ = load_img(origin_image_bytes)
mask, _ = load_img(open(input["mask"], 'rb').read(), gray=True)
elif image_type == 'pil':
# input: {'image': pil, 'mask': pil}
image_pil = input['image']
mask_pil = input['mask']
image = np.array(image_pil)
mask = np.array(mask_pil.convert("L"))
output = model_process(image, mask, img_enhancer)
return output, gr.update(visible=True)
css = '''
.container {max-width: 1150px; margin: auto;padding-top: 1.5rem}
#begin-btn {color: blue; font-size:20px;}
#work-container {min-width: min(160px, 100%) !important;flex-grow: 0 !important}
#op-container{margin: 0 auto; text-align: center;width:fit-content;min-width: min(150px, 100%);flex-grow: 0; flex-wrap: nowrap;}
#erase-btn-container{margin: 0 auto; text-align: center;width:150px;border-width:5px;border-color:#2c9748}
#erase-btn {padding:0;}
#enhancer-checkbox{width:520px}
#enhancer-tip{width:450px}
#enhancer-tip-div{text-align: left}
#image_output{margin: 0 auto; text-align: center;width:640px}
#download-container{margin: 0 auto; text-align: center;width:fit-content; min-width: min(150px, 100%);flex-grow: 0; flex-wrap: nowrap;}
#download-btn-container{margin: 0 auto; text-align: center;width: 100px;border-width:1px;border-color:#2c9748}
#download-btn {padding:0;}
#share-container{margin: 0 auto; text-align: center;width:fit-content; min-width: min(150px, 100%);flex-grow: 0; flex-wrap: nowrap;}
#image_upload .touch-none{display: flex}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
'''
set_page_elements = """async() => {
function isMobile() {
try {
document.createEvent("TouchEvent"); return true;
} catch(e) {
return false;
}
}
var gradioEl = document.querySelector('body > gradio-app').shadowRoot;
if (!gradioEl) {
gradioEl = document.querySelector('body > gradio-app');
}
const group1 = gradioEl.querySelectorAll('#group_1')[0];
const group2 = gradioEl.querySelectorAll('#group_2')[0];
const image_upload = gradioEl.querySelectorAll('#image_upload')[0];
const image_output = gradioEl.querySelectorAll('#image_output')[0];
const data_image = gradioEl.querySelectorAll('#image_upload [data-testid="image"]')[0];
const data_image_div = gradioEl.querySelectorAll('#image_upload [data-testid="image"] > div')[0];
if (isMobile()) {
const group1_width = group1.offsetWidth;
image_upload.setAttribute('style', 'width:' + (group1_width - 13*2) + 'px; min-height:none;');
data_image.setAttribute('style', 'width: ' + (group1_width - 14*2) + 'px;min-height:none;');
data_image_div.setAttribute('style', 'width: ' + (group1_width - 14*2) + 'px;min-height:none;');
image_output.setAttribute('style', 'width: ' + (group1_width - 13*2) + 'px;min-height:none;');
const enhancer = gradioEl.querySelectorAll('#enhancer-checkbox')[0];
enhancer.style.display = "none";
const share_btn_container = gradioEl.querySelectorAll('#share-btn-container')[0];
share_btn_container.setAttribute('style', 'width: 0px; height:0px;');
const share_btn_share_icon = gradioEl.querySelectorAll('#share-btn-share-icon')[0];
share_btn_share_icon.setAttribute('style', 'width: 0px; height:0px;');
} else {
max_height = 800;
image_upload.setAttribute('style', 'min-height: ' + max_height + 'px; overflow-x: overlay');
data_image.setAttribute('style', 'height: ' + max_height + 'px');
data_image_div.setAttribute('style', 'min-height: ' + max_height + 'px');
}
group1.style.display = "none";
group2.style.display = "block";
}"""
download_img = """async() => {
Date.prototype.Format = function (fmt) {
var o = {
"M+": this.getMonth() + 1,
"d+": this.getDate(),
"h+": this.getHours(),
"m+": this.getMinutes(),
"s+": this.getSeconds(),
"q+": Math.floor((this.getMonth() + 3) / 3),
"S": this.getMilliseconds()
};
if (/(y+)/.test(fmt))
fmt = fmt.replace(RegExp.$1, (this.getFullYear() + "").substr(4 - RegExp.$1.length));
for (var k in o)
if (new RegExp("(" + k + ")").test(fmt)) fmt = fmt.replace(RegExp.$1, (RegExp.$1.length == 1) ? (o[k]) : (("00" + o[k]).substr(("" + o[k]).length)));
return fmt;
}
var gradioEl = document.querySelector('body > gradio-app').shadowRoot;
if (!gradioEl) {
gradioEl = document.querySelector('body > gradio-app');
}
const out_image = gradioEl.querySelectorAll('#image_output img')[0];
if (out_image) {
var x=new XMLHttpRequest();
x.open("GET", out_image.src, true);
x.responseType = 'blob';
x.onload = function(e){
var url = window.URL.createObjectURL(x.response)
var a = document.createElement('a');
a.href = url;
a.download = (new Date()).Format("yyyyMMdd_hhmmss");
a.click();
}
x.send();
}
}"""
image_blocks = gr.Blocks(css=css, title='Image Cleaner')
with image_blocks as demo:
with gr.Group(elem_id="group_1", visible=True) as group_1:
with gr.Box():
with gr.Row(elem_id="gallery_row"):
with gr.Column(elem_id="gallery_col"):
gallery = gr.Gallery(value=['./sample_00.jpg','./sample_00_e.jpg'], show_label=False)
gallery.style(grid=[2], height='500px')
with gr.Row():
with gr.Column():
begin_button = gr.Button("Let's GO!", elem_id="begin-btn", visible=True)
with gr.Row():
with gr.Column():
gr.HTML("""
<div style='margin: 0 auto; text-align: center;color:red;'>
<p>
Solemnly promise: this application will not collect any user information and image resources.
</p>
</div>
<div style='margin: 0 auto; text-align: center'>
The Lama model comes from <a href='https://github.com/Sanster/lama-cleaner' target=_blank>[Lama]</a>. Thanks!
</div>
"""
)
with gr.Group(elem_id="group_2", visible=False) as group_2:
with gr.Box(elem_id="work-container"):
with gr.Row(elem_id="input-container"):
with gr.Column():
image_input = gr.Image(source='upload', elem_id="image_upload",tool='sketch', type=f'{image_type}',
label="Upload", show_label=False).style(mobile_collapse=False)
with gr.Row(elem_id="op-container").style(mobile_collapse=False, equal_height=True):
with gr.Column(elem_id="erase-btn-container"):
erase_btn = gr.Button(value = "Erase(↓)",elem_id="erase-btn").style(
margin=True,
rounded=(True, True, True, True),
full_width=True,
).style(width=100)
with gr.Column(elem_id="enhancer-checkbox", visible=True if image_enhancer is not None else False):
enhancer_label = 'Enhanced image(processing is very slow, please check only for blurred images)'
img_enhancer = gr.Checkbox(label=enhancer_label).style(width=150)
with gr.Row(elem_id="output-container"):
with gr.Column():
image_out = gr.Image(elem_id="image_output",label="Result", show_label=False)
with gr.Row(elem_id="download-container", visible=False) as download_container:
with gr.Column(elem_id="download-btn-container") as download_btn_container:
download_button = gr.Button(elem_id="download-btn", value="Save(β†’)")
with gr.Column(elem_id="share-container") as share_container:
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html, elem_id="community-icon", visible=True)
loading_icon = gr.HTML(loading_icon_html, elem_id="loading-icon", visible=True)
share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
erase_btn.click(fn=predict, inputs=[image_input, img_enhancer], outputs=[image_out, download_container])
download_button.click(None, [], [], _js=download_img)
share_button.click(None, [], [], _js=share_js)
begin_button.click(fn=None, inputs=[], outputs=[group_1, group_2], _js=set_page_elements)
image_blocks.launch(server_name='0.0.0.0')