Spaces:
Running
Running
File size: 15,825 Bytes
6c85792 c8cb9bb 924af64 c8cb9bb 6c85792 a5ca5a6 a18a2d9 a5ca5a6 23e2e2a 9f9dde1 a5ca5a6 bba2454 a5ca5a6 774d798 a5ca5a6 8d01019 6c85792 21fc719 6c85792 924af64 6d2e8db 924af64 6d2e8db 924af64 ede9250 924af64 ccdb134 924af64 ede9250 bba2454 ea1e63c ede9250 2e0fb71 020dc5b a0a768e 6717f64 924af64 6717f64 ea1e63c 6717f64 ede9250 6717f64 ede9250 38af3c8 ede9250 6717f64 ede9250 6717f64 2e0fb71 ede9250 6717f64 ea1e63c a5ca5a6 46cde7f 70c2a37 ede9250 383d7cb 6717f64 924af64 6717f64 924af64 383d7cb 6717f64 ede9250 a006e4e 6c85792 23e2e2a 12416bd 23e2e2a 12416bd 23e2e2a a006e4e 23e2e2a a006e4e 12416bd 6c85792 12416bd 6c85792 cd73099 70c2a37 924af64 23e2e2a b459c2e 924af64 9f9dde1 23e2e2a 924af64 9f9dde1 23e2e2a 924af64 23e2e2a 9f9dde1 924af64 23e2e2a c1a1768 70c2a37 23e2e2a a006e4e 924af64 9f9dde1 924af64 23e2e2a 924af64 cd73099 ccdb134 6c85792 924af64 70c2a37 924af64 70c2a37 924af64 70c2a37 ccdb134 70c2a37 924af64 ede9250 6c85792 70c2a37 ccdb134 23e2e2a ede9250 924af64 ccdb134 ede9250 32d9c0d 924af64 23e2e2a a006e4e 23e2e2a 9f9dde1 924af64 ccdb134 a006e4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
import gradio as gr
from PIL import Image
import numpy as np
import os,sys
import uuid
import torch
import cv2
import io
import multiprocessing
import random
import time
import imghdr
from loguru import logger
from share_btn import community_icon_html, loading_icon_html, download_icon_html, share_js
from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config
try:
torch._C._jit_override_can_fuse_on_cpu(False)
torch._C._jit_override_can_fuse_on_gpu(False)
torch._C._jit_set_texpr_fuser_enabled(False)
torch._C._jit_set_nvfuser_enabled(False)
except:
pass
from lama_cleaner.helper import (
load_img,
numpy_to_bytes,
resize_max_size,
)
NUM_THREADS = str(multiprocessing.cpu_count())
# fix libomp problem on windows https://github.com/Sanster/lama-cleaner/issues/56
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"
os.environ["OMP_NUM_THREADS"] = NUM_THREADS
os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS
os.environ["MKL_NUM_THREADS"] = NUM_THREADS
os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS
os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS
if os.environ.get("CACHE_DIR"):
os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"]
HF_TOKEN_SD = os.environ.get('HF_TOKEN_SD')
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f'device = {device}')
def read_content(file_path: str) -> str:
"""read the content of target file
"""
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
return content
def get_image_enhancer(scale = 2, device='cuda:0'):
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
from gfpgan import GFPGANer
realesrgan_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64,
num_block=23, num_grow_ch=32, scale=4
)
netscale = scale
model_realesrgan = 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth'
upsampler = RealESRGANer(
scale=netscale,
model_path=model_realesrgan,
model=realesrgan_model,
tile=0,
tile_pad=10,
pre_pad=0,
half=False if device=='cpu' else True,
device=device
)
model_GFPGAN = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth'
img_enhancer = GFPGANer(
model_path=model_GFPGAN,
upscale=scale,
arch='clean',
channel_multiplier=2,
bg_upsampler=upsampler,
device=device
)
return img_enhancer
image_enhancer = None
if sys.platform == 'linux' and 0==1:
image_enhancer = get_image_enhancer(scale = 1, device=device)
model = None
def model_process(image, mask, img_enhancer):
global model,image_enhancer
if mask.shape[0] == image.shape[1] and mask.shape[1] == image.shape[0] and mask.shape[0] != mask.shape[1]:
# rotate image
image = np.transpose(image[::-1, ...][:, ::-1], axes=(1, 0, 2))[::-1, ...]
original_shape = image.shape
interpolation = cv2.INTER_CUBIC
size_limit = 1080
if size_limit == "Original":
size_limit = max(image.shape)
else:
size_limit = int(size_limit)
config = Config(
ldm_steps=25,
ldm_sampler='plms',
zits_wireframe=True,
hd_strategy='Original',
hd_strategy_crop_margin=196,
hd_strategy_crop_trigger_size=1280,
hd_strategy_resize_limit=2048,
prompt='',
use_croper=False,
croper_x=0,
croper_y=0,
croper_height=512,
croper_width=512,
sd_mask_blur=5,
sd_strength=0.75,
sd_steps=50,
sd_guidance_scale=7.5,
sd_sampler='ddim',
sd_seed=42,
cv2_flag='INPAINT_NS',
cv2_radius=5,
)
if config.sd_seed == -1:
config.sd_seed = random.randint(1, 999999999)
logger.info(f"Origin image shape_0_: {original_shape} / {size_limit}")
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
logger.info(f"Resized image shape_1_: {image.shape}")
logger.info(f"mask image shape_0_: {mask.shape} / {type(mask)}")
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
logger.info(f"mask image shape_1_: {mask.shape} / {type(mask)}")
if model is None:
return None
res_np_img = model(image, mask, config)
torch.cuda.empty_cache()
image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, 'png')))
if image_enhancer is not None and img_enhancer:
start = time.time()
input_img_rgb = np.array(image)
input_img_bgr = input_img_rgb[...,[2,1,0]]
_, _, enhance_img = image_enhancer.enhance(input_img_bgr, has_aligned=False,
only_center_face=False, paste_back=True)
input_img_rgb = enhance_img[...,[2,1,0]]
img_enhance = Image.fromarray(np.uint8(input_img_rgb))
image = img_enhance
log_info = f"image_enhancer_: {(time.time() - start) * 1000}ms, {res_np_img.shape} "
logger.info(log_info)
return image # image
model = ModelManager(
name='lama',
device=device,
)
image_type = 'pil' # filepath'
def predict(input, img_enhancer):
if input is None:
return None
if image_type == 'filepath':
# input: {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'}
origin_image_bytes = open(input["image"], 'rb').read()
print(f'origin_image_bytes = ', type(origin_image_bytes), len(origin_image_bytes))
image, _ = load_img(origin_image_bytes)
mask, _ = load_img(open(input["mask"], 'rb').read(), gray=True)
elif image_type == 'pil':
# input: {'image': pil, 'mask': pil}
image_pil = input['image']
mask_pil = input['mask']
image = np.array(image_pil)
mask = np.array(mask_pil.convert("L"))
output = model_process(image, mask, img_enhancer)
return output, gr.update(visible=True)
css = '''
.container {max-width: 1150px; margin: auto;padding-top: 1.5rem}
#begin-btn {color: blue; font-size:20px;}
#work-container {min-width: min(160px, 100%) !important;flex-grow: 0 !important}
#op-container{margin: 0 auto; text-align: center;width:fit-content;min-width: min(150px, 100%);flex-grow: 0; flex-wrap: nowrap;}
#erase-btn-container{margin: 0 auto; text-align: center;width:150px;border-width:5px;border-color:#2c9748}
#erase-btn {padding:0;}
#enhancer-checkbox{width:520px}
#enhancer-tip{width:450px}
#enhancer-tip-div{text-align: left}
#image_output{margin: 0 auto; text-align: center;width:640px}
#download-container{margin: 0 auto; text-align: center;width:fit-content; min-width: min(150px, 100%);flex-grow: 0; flex-wrap: nowrap;}
#download-btn-container{margin: 0 auto; text-align: center;width: 100px;border-width:1px;border-color:#2c9748}
#download-btn {padding:0;}
#share-container{margin: 0 auto; text-align: center;width:fit-content; min-width: min(150px, 100%);flex-grow: 0; flex-wrap: nowrap;}
#image_upload .touch-none{display: flex}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
'''
set_page_elements = """async() => {
function isMobile() {
try {
document.createEvent("TouchEvent"); return true;
} catch(e) {
return false;
}
}
var gradioEl = document.querySelector('body > gradio-app').shadowRoot;
if (!gradioEl) {
gradioEl = document.querySelector('body > gradio-app');
}
const group1 = gradioEl.querySelectorAll('#group_1')[0];
const group2 = gradioEl.querySelectorAll('#group_2')[0];
const image_upload = gradioEl.querySelectorAll('#image_upload')[0];
const image_output = gradioEl.querySelectorAll('#image_output')[0];
const data_image = gradioEl.querySelectorAll('#image_upload [data-testid="image"]')[0];
const data_image_div = gradioEl.querySelectorAll('#image_upload [data-testid="image"] > div')[0];
if (isMobile()) {
const group1_width = group1.offsetWidth;
image_upload.setAttribute('style', 'width:' + (group1_width - 13*2) + 'px; min-height:none;');
data_image.setAttribute('style', 'width: ' + (group1_width - 14*2) + 'px;min-height:none;');
data_image_div.setAttribute('style', 'width: ' + (group1_width - 14*2) + 'px;min-height:none;');
image_output.setAttribute('style', 'width: ' + (group1_width - 13*2) + 'px;min-height:none;');
const enhancer = gradioEl.querySelectorAll('#enhancer-checkbox')[0];
enhancer.style.display = "none";
const share_btn_container = gradioEl.querySelectorAll('#share-btn-container')[0];
share_btn_container.setAttribute('style', 'width: 0px; height:0px;');
const share_btn_share_icon = gradioEl.querySelectorAll('#share-btn-share-icon')[0];
share_btn_share_icon.setAttribute('style', 'width: 0px; height:0px;');
} else {
max_height = 800;
image_upload.setAttribute('style', 'min-height: ' + max_height + 'px; overflow-x: overlay');
data_image.setAttribute('style', 'height: ' + max_height + 'px');
data_image_div.setAttribute('style', 'min-height: ' + max_height + 'px');
}
group1.style.display = "none";
group2.style.display = "block";
}"""
download_img = """async() => {
Date.prototype.Format = function (fmt) {
var o = {
"M+": this.getMonth() + 1,
"d+": this.getDate(),
"h+": this.getHours(),
"m+": this.getMinutes(),
"s+": this.getSeconds(),
"q+": Math.floor((this.getMonth() + 3) / 3),
"S": this.getMilliseconds()
};
if (/(y+)/.test(fmt))
fmt = fmt.replace(RegExp.$1, (this.getFullYear() + "").substr(4 - RegExp.$1.length));
for (var k in o)
if (new RegExp("(" + k + ")").test(fmt)) fmt = fmt.replace(RegExp.$1, (RegExp.$1.length == 1) ? (o[k]) : (("00" + o[k]).substr(("" + o[k]).length)));
return fmt;
}
var gradioEl = document.querySelector('body > gradio-app').shadowRoot;
if (!gradioEl) {
gradioEl = document.querySelector('body > gradio-app');
}
const out_image = gradioEl.querySelectorAll('#image_output img')[0];
if (out_image) {
var x=new XMLHttpRequest();
x.open("GET", out_image.src, true);
x.responseType = 'blob';
x.onload = function(e){
var url = window.URL.createObjectURL(x.response)
var a = document.createElement('a');
a.href = url;
a.download = (new Date()).Format("yyyyMMdd_hhmmss");
a.click();
}
x.send();
}
}"""
image_blocks = gr.Blocks(css=css, title='Image Cleaner')
with image_blocks as demo:
with gr.Group(elem_id="group_1", visible=True) as group_1:
with gr.Box():
with gr.Row(elem_id="gallery_row"):
with gr.Column(elem_id="gallery_col"):
gallery = gr.Gallery(value=['./sample_00.jpg','./sample_00_e.jpg'], show_label=False)
gallery.style(grid=[2], height='500px')
with gr.Row():
with gr.Column():
begin_button = gr.Button("Let's GO!", elem_id="begin-btn", visible=True)
with gr.Row():
with gr.Column():
gr.HTML("""
<div style='margin: 0 auto; text-align: center;color:red;'>
<p>
Solemnly promise: this application will not collect any user information and image resources.
</p>
</div>
<div style='margin: 0 auto; text-align: center'>
The Lama model comes from <a href='https://github.com/Sanster/lama-cleaner' target=_blank>[Lama]</a>. Thanks!
</div>
"""
)
with gr.Group(elem_id="group_2", visible=False) as group_2:
with gr.Box(elem_id="work-container"):
with gr.Row(elem_id="input-container"):
with gr.Column():
image_input = gr.Image(source='upload', elem_id="image_upload",tool='sketch', type=f'{image_type}',
label="Upload", show_label=False).style(mobile_collapse=False)
with gr.Row(elem_id="op-container").style(mobile_collapse=False, equal_height=True):
with gr.Column(elem_id="erase-btn-container"):
erase_btn = gr.Button(value = "Erase(↓)",elem_id="erase-btn").style(
margin=True,
rounded=(True, True, True, True),
full_width=True,
).style(width=100)
with gr.Column(elem_id="enhancer-checkbox", visible=True if image_enhancer is not None else False):
enhancer_label = 'Enhanced image(processing is very slow, please check only for blurred images)'
img_enhancer = gr.Checkbox(label=enhancer_label).style(width=150)
with gr.Row(elem_id="output-container"):
with gr.Column():
image_out = gr.Image(elem_id="image_output",label="Result", show_label=False)
with gr.Row(elem_id="download-container", visible=False) as download_container:
with gr.Column(elem_id="download-btn-container") as download_btn_container:
download_button = gr.Button(elem_id="download-btn", value="Save(→)")
with gr.Column(elem_id="share-container") as share_container:
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html, elem_id="community-icon", visible=True)
loading_icon = gr.HTML(loading_icon_html, elem_id="loading-icon", visible=True)
share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
erase_btn.click(fn=predict, inputs=[image_input, img_enhancer], outputs=[image_out, download_container])
download_button.click(None, [], [], _js=download_img)
share_button.click(None, [], [], _js=share_js)
begin_button.click(fn=None, inputs=[], outputs=[group_1, group_2], _js=set_page_elements)
image_blocks.launch(server_name='0.0.0.0')
|