Spaces:
Runtime error
Runtime error
import gradio as gr | |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL | |
from diffusers.utils import load_image | |
from transformers import DPTImageProcessor, DPTForDepthEstimation | |
import torch | |
import mediapy | |
import sa_handler | |
import pipeline_calls | |
# init models | |
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda") | |
feature_processor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas") | |
controlnet = ControlNetModel.from_pretrained( | |
"diffusers/controlnet-depth-sdxl-1.0", | |
variant="fp16", | |
use_safetensors=True, | |
torch_dtype=torch.float16, | |
).to("cuda") | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda") | |
pipeline = StableDiffusionXLControlNetPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
controlnet=controlnet, | |
vae=vae, | |
variant="fp16", | |
use_safetensors=True, | |
torch_dtype=torch.float16, | |
).to("cuda") | |
pipeline.enable_model_cpu_offload() | |
sa_args = sa_handler.StyleAlignedArgs(share_group_norm=False, | |
share_layer_norm=False, | |
share_attention=True, | |
adain_queries=True, | |
adain_keys=True, | |
adain_values=False, | |
) | |
handler = sa_handler.Handler(pipeline) | |
handler.register(sa_args, ) | |
# get depth maps | |
def get_depth_maps(image): | |
image = load_image(image) #("./example_image/train.png") | |
depth_image1 = pipeline_calls.get_depth_map(image, feature_processor, depth_estimator) | |
#depth_image2 = load_image("./example_image/sun.png").resize((1024, 1024)) | |
#mediapy.show_images([depth_image1, depth_image2]) | |
return depth_image1 #[depth_image1, depth_image2] | |
# run ControlNet depth with StyleAligned | |
def style_aligned_controlnet(reference_prompt, target_prompt, image): | |
#reference_prompt = "a poster in flat design style" | |
#target_prompts = [target_prompts] #["a train in flat design style", "the sun in flat design style"] | |
controlnet_conditioning_scale = 0.8 | |
num_images_per_prompt = 1 # adjust according to VRAM size | |
depth_map = get_depth_maps(image) | |
latents = torch.randn(1 + num_images_per_prompt, 4, 128, 128).to(pipeline.unet.dtype) | |
#for deph_map, target_prompt in zip((depth_image1, depth_image2), target_prompts): | |
latents[1:] = torch.randn(num_images_per_prompt, 4, 128, 128).to(pipeline.unet.dtype) | |
images = pipeline_calls.controlnet_call(pipeline, [reference_prompt, target_prompt], | |
image=deph_map, | |
num_inference_steps=50, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
num_images_per_prompt=num_images_per_prompt, | |
latents=latents) | |
print(f"images -{images}") | |
return images[0] | |
#mediapy.show_images([images[0], deph_map] + images[1:], titles=["reference", "depth"] + [f'result {i}' for i in range(1, len(images))]) | |
with gr.Blocks() as demo: | |
with gr.Row(variant='panel'): | |
with gr.Group(): | |
gr.Markdown("### <center>Reference Prompt and Image</center>") | |
ref_prompt = gr.Textbox(label="Enter a Prompt describing the reference image", placeholder='a photo of <object> in <style name> style') | |
depth_map = gr.Image(label="Upload the image to get Depth Map", ) | |
with gr.Group(): | |
gr.Markdown("### <center>Prompt for generation and generated Image</center>") | |
prompt = gr.Textbox(label="Enter a Prompt", placeholder='a photo of <object> in <style name> style') | |
output = gr.Image(label="Style-Aligned ControlNet",type='pil') | |
btn = gr.Button("Generate", size='sm') | |
btn.click(fn=greet, inputs=[ref_prompt, prompt, depth_map], outputs=output, api_name="style_aligned_controlnet") | |
demo.launch() | |