Spaces:
Running
on
Zero
Running
on
Zero
/* | |
* Copyright (C) 2023, Inria | |
* GRAPHDECO research group, https://team.inria.fr/graphdeco | |
* All rights reserved. | |
* | |
* This software is free for non-commercial, research and evaluation use | |
* under the terms of the LICENSE.md file. | |
* | |
* For inquiries contact george.drettakis@inria.fr | |
*/ | |
namespace cg = cooperative_groups; | |
struct CustomMin | |
{ | |
__device__ __forceinline__ | |
float3 operator()(const float3& a, const float3& b) const { | |
return { min(a.x, b.x), min(a.y, b.y), min(a.z, b.z) }; | |
} | |
}; | |
struct CustomMax | |
{ | |
__device__ __forceinline__ | |
float3 operator()(const float3& a, const float3& b) const { | |
return { max(a.x, b.x), max(a.y, b.y), max(a.z, b.z) }; | |
} | |
}; | |
__host__ __device__ uint32_t prepMorton(uint32_t x) | |
{ | |
x = (x | (x << 16)) & 0x030000FF; | |
x = (x | (x << 8)) & 0x0300F00F; | |
x = (x | (x << 4)) & 0x030C30C3; | |
x = (x | (x << 2)) & 0x09249249; | |
return x; | |
} | |
__host__ __device__ uint32_t coord2Morton(float3 coord, float3 minn, float3 maxx) | |
{ | |
uint32_t x = prepMorton(((coord.x - minn.x) / (maxx.x - minn.x)) * ((1 << 10) - 1)); | |
uint32_t y = prepMorton(((coord.y - minn.y) / (maxx.y - minn.y)) * ((1 << 10) - 1)); | |
uint32_t z = prepMorton(((coord.z - minn.z) / (maxx.z - minn.z)) * ((1 << 10) - 1)); | |
return x | (y << 1) | (z << 2); | |
} | |
__global__ void coord2Morton(int P, const float3* points, float3 minn, float3 maxx, uint32_t* codes) | |
{ | |
auto idx = cg::this_grid().thread_rank(); | |
if (idx >= P) | |
return; | |
codes[idx] = coord2Morton(points[idx], minn, maxx); | |
} | |
struct MinMax | |
{ | |
float3 minn; | |
float3 maxx; | |
}; | |
__global__ void boxMinMax(uint32_t P, float3* points, uint32_t* indices, MinMax* boxes) | |
{ | |
auto idx = cg::this_grid().thread_rank(); | |
MinMax me; | |
if (idx < P) | |
{ | |
me.minn = points[indices[idx]]; | |
me.maxx = points[indices[idx]]; | |
} | |
else | |
{ | |
me.minn = { FLT_MAX, FLT_MAX, FLT_MAX }; | |
me.maxx = { -FLT_MAX,-FLT_MAX,-FLT_MAX }; | |
} | |
__shared__ MinMax redResult[BOX_SIZE]; | |
for (int off = BOX_SIZE / 2; off >= 1; off /= 2) | |
{ | |
if (threadIdx.x < 2 * off) | |
redResult[threadIdx.x] = me; | |
__syncthreads(); | |
if (threadIdx.x < off) | |
{ | |
MinMax other = redResult[threadIdx.x + off]; | |
me.minn.x = min(me.minn.x, other.minn.x); | |
me.minn.y = min(me.minn.y, other.minn.y); | |
me.minn.z = min(me.minn.z, other.minn.z); | |
me.maxx.x = max(me.maxx.x, other.maxx.x); | |
me.maxx.y = max(me.maxx.y, other.maxx.y); | |
me.maxx.z = max(me.maxx.z, other.maxx.z); | |
} | |
__syncthreads(); | |
} | |
if (threadIdx.x == 0) | |
boxes[blockIdx.x] = me; | |
} | |
__device__ __host__ float distBoxPoint(const MinMax& box, const float3& p) | |
{ | |
float3 diff = { 0, 0, 0 }; | |
if (p.x < box.minn.x || p.x > box.maxx.x) | |
diff.x = min(abs(p.x - box.minn.x), abs(p.x - box.maxx.x)); | |
if (p.y < box.minn.y || p.y > box.maxx.y) | |
diff.y = min(abs(p.y - box.minn.y), abs(p.y - box.maxx.y)); | |
if (p.z < box.minn.z || p.z > box.maxx.z) | |
diff.z = min(abs(p.z - box.minn.z), abs(p.z - box.maxx.z)); | |
return diff.x * diff.x + diff.y * diff.y + diff.z * diff.z; | |
} | |
template<int K> | |
__device__ void updateKBest(const float3& ref, const float3& point, float* knn) | |
{ | |
float3 d = { point.x - ref.x, point.y - ref.y, point.z - ref.z }; | |
float dist = d.x * d.x + d.y * d.y + d.z * d.z; | |
for (int j = 0; j < K; j++) | |
{ | |
if (knn[j] > dist) | |
{ | |
float t = knn[j]; | |
knn[j] = dist; | |
dist = t; | |
} | |
} | |
} | |
__global__ void boxMeanDist(uint32_t P, float3* points, uint32_t* indices, MinMax* boxes, float* dists) | |
{ | |
int idx = cg::this_grid().thread_rank(); | |
if (idx >= P) | |
return; | |
float3 point = points[indices[idx]]; | |
float best[3] = { FLT_MAX, FLT_MAX, FLT_MAX }; | |
for (int i = max(0, idx - 3); i <= min(P - 1, idx + 3); i++) | |
{ | |
if (i == idx) | |
continue; | |
updateKBest<3>(point, points[indices[i]], best); | |
} | |
float reject = best[2]; | |
best[0] = FLT_MAX; | |
best[1] = FLT_MAX; | |
best[2] = FLT_MAX; | |
for (int b = 0; b < (P + BOX_SIZE - 1) / BOX_SIZE; b++) | |
{ | |
MinMax box = boxes[b]; | |
float dist = distBoxPoint(box, point); | |
if (dist > reject || dist > best[2]) | |
continue; | |
for (int i = b * BOX_SIZE; i < min(P, (b + 1) * BOX_SIZE); i++) | |
{ | |
if (i == idx) | |
continue; | |
updateKBest<3>(point, points[indices[i]], best); | |
} | |
} | |
dists[indices[idx]] = (best[0] + best[1] + best[2]) / 3.0f; | |
} | |
void SimpleKNN::knn(int P, float3* points, float* meanDists) | |
{ | |
float3* result; | |
cudaMalloc(&result, sizeof(float3)); | |
size_t temp_storage_bytes; | |
float3 init = { 0, 0, 0 }, minn, maxx; | |
cub::DeviceReduce::Reduce(nullptr, temp_storage_bytes, points, result, P, CustomMin(), init); | |
thrust::device_vector<char> temp_storage(temp_storage_bytes); | |
cub::DeviceReduce::Reduce(temp_storage.data().get(), temp_storage_bytes, points, result, P, CustomMin(), init); | |
cudaMemcpy(&minn, result, sizeof(float3), cudaMemcpyDeviceToHost); | |
cub::DeviceReduce::Reduce(temp_storage.data().get(), temp_storage_bytes, points, result, P, CustomMax(), init); | |
cudaMemcpy(&maxx, result, sizeof(float3), cudaMemcpyDeviceToHost); | |
thrust::device_vector<uint32_t> morton(P); | |
thrust::device_vector<uint32_t> morton_sorted(P); | |
coord2Morton << <(P + 255) / 256, 256 >> > (P, points, minn, maxx, morton.data().get()); | |
thrust::device_vector<uint32_t> indices(P); | |
thrust::sequence(indices.begin(), indices.end()); | |
thrust::device_vector<uint32_t> indices_sorted(P); | |
cub::DeviceRadixSort::SortPairs(nullptr, temp_storage_bytes, morton.data().get(), morton_sorted.data().get(), indices.data().get(), indices_sorted.data().get(), P); | |
temp_storage.resize(temp_storage_bytes); | |
cub::DeviceRadixSort::SortPairs(temp_storage.data().get(), temp_storage_bytes, morton.data().get(), morton_sorted.data().get(), indices.data().get(), indices_sorted.data().get(), P); | |
uint32_t num_boxes = (P + BOX_SIZE - 1) / BOX_SIZE; | |
thrust::device_vector<MinMax> boxes(num_boxes); | |
boxMinMax << <num_boxes, BOX_SIZE >> > (P, points, indices_sorted.data().get(), boxes.data().get()); | |
boxMeanDist << <num_boxes, BOX_SIZE >> > (P, points, indices_sorted.data().get(), boxes.data().get(), meanDists); | |
cudaFree(result); | |
} |