yslan's picture
update
fc6af43
raw
history blame
23.8 kB
/*
* Copyright (C) 2023, Inria
* GRAPHDECO research group, https://team.inria.fr/graphdeco
* All rights reserved.
*
* This software is free for non-commercial, research and evaluation use
* under the terms of the LICENSE.md file.
*
* For inquiries contact george.drettakis@inria.fr
*/
#include "backward.h"
#include "auxiliary.h"
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
namespace cg = cooperative_groups;
// Backward pass for conversion of spherical harmonics to RGB for
// each Gaussian.
__device__ void computeColorFromSH(int idx, int deg, int max_coeffs, const glm::vec3* means, glm::vec3 campos, const float* shs, const bool* clamped, const glm::vec3* dL_dcolor, glm::vec3* dL_dmeans, glm::vec3* dL_dshs)
{
// Compute intermediate values, as it is done during forward
glm::vec3 pos = means[idx];
glm::vec3 dir_orig = pos - campos;
glm::vec3 dir = dir_orig / glm::length(dir_orig);
glm::vec3* sh = ((glm::vec3*)shs) + idx * max_coeffs;
// Use PyTorch rule for clamping: if clamping was applied,
// gradient becomes 0.
glm::vec3 dL_dRGB = dL_dcolor[idx];
dL_dRGB.x *= clamped[3 * idx + 0] ? 0 : 1;
dL_dRGB.y *= clamped[3 * idx + 1] ? 0 : 1;
dL_dRGB.z *= clamped[3 * idx + 2] ? 0 : 1;
glm::vec3 dRGBdx(0, 0, 0);
glm::vec3 dRGBdy(0, 0, 0);
glm::vec3 dRGBdz(0, 0, 0);
float x = dir.x;
float y = dir.y;
float z = dir.z;
// Target location for this Gaussian to write SH gradients to
glm::vec3* dL_dsh = dL_dshs + idx * max_coeffs;
// No tricks here, just high school-level calculus.
float dRGBdsh0 = SH_C0;
dL_dsh[0] = dRGBdsh0 * dL_dRGB;
if (deg > 0)
{
float dRGBdsh1 = -SH_C1 * y;
float dRGBdsh2 = SH_C1 * z;
float dRGBdsh3 = -SH_C1 * x;
dL_dsh[1] = dRGBdsh1 * dL_dRGB;
dL_dsh[2] = dRGBdsh2 * dL_dRGB;
dL_dsh[3] = dRGBdsh3 * dL_dRGB;
dRGBdx = -SH_C1 * sh[3];
dRGBdy = -SH_C1 * sh[1];
dRGBdz = SH_C1 * sh[2];
if (deg > 1)
{
float xx = x * x, yy = y * y, zz = z * z;
float xy = x * y, yz = y * z, xz = x * z;
float dRGBdsh4 = SH_C2[0] * xy;
float dRGBdsh5 = SH_C2[1] * yz;
float dRGBdsh6 = SH_C2[2] * (2.f * zz - xx - yy);
float dRGBdsh7 = SH_C2[3] * xz;
float dRGBdsh8 = SH_C2[4] * (xx - yy);
dL_dsh[4] = dRGBdsh4 * dL_dRGB;
dL_dsh[5] = dRGBdsh5 * dL_dRGB;
dL_dsh[6] = dRGBdsh6 * dL_dRGB;
dL_dsh[7] = dRGBdsh7 * dL_dRGB;
dL_dsh[8] = dRGBdsh8 * dL_dRGB;
dRGBdx += SH_C2[0] * y * sh[4] + SH_C2[2] * 2.f * -x * sh[6] + SH_C2[3] * z * sh[7] + SH_C2[4] * 2.f * x * sh[8];
dRGBdy += SH_C2[0] * x * sh[4] + SH_C2[1] * z * sh[5] + SH_C2[2] * 2.f * -y * sh[6] + SH_C2[4] * 2.f * -y * sh[8];
dRGBdz += SH_C2[1] * y * sh[5] + SH_C2[2] * 2.f * 2.f * z * sh[6] + SH_C2[3] * x * sh[7];
if (deg > 2)
{
float dRGBdsh9 = SH_C3[0] * y * (3.f * xx - yy);
float dRGBdsh10 = SH_C3[1] * xy * z;
float dRGBdsh11 = SH_C3[2] * y * (4.f * zz - xx - yy);
float dRGBdsh12 = SH_C3[3] * z * (2.f * zz - 3.f * xx - 3.f * yy);
float dRGBdsh13 = SH_C3[4] * x * (4.f * zz - xx - yy);
float dRGBdsh14 = SH_C3[5] * z * (xx - yy);
float dRGBdsh15 = SH_C3[6] * x * (xx - 3.f * yy);
dL_dsh[9] = dRGBdsh9 * dL_dRGB;
dL_dsh[10] = dRGBdsh10 * dL_dRGB;
dL_dsh[11] = dRGBdsh11 * dL_dRGB;
dL_dsh[12] = dRGBdsh12 * dL_dRGB;
dL_dsh[13] = dRGBdsh13 * dL_dRGB;
dL_dsh[14] = dRGBdsh14 * dL_dRGB;
dL_dsh[15] = dRGBdsh15 * dL_dRGB;
dRGBdx += (
SH_C3[0] * sh[9] * 3.f * 2.f * xy +
SH_C3[1] * sh[10] * yz +
SH_C3[2] * sh[11] * -2.f * xy +
SH_C3[3] * sh[12] * -3.f * 2.f * xz +
SH_C3[4] * sh[13] * (-3.f * xx + 4.f * zz - yy) +
SH_C3[5] * sh[14] * 2.f * xz +
SH_C3[6] * sh[15] * 3.f * (xx - yy));
dRGBdy += (
SH_C3[0] * sh[9] * 3.f * (xx - yy) +
SH_C3[1] * sh[10] * xz +
SH_C3[2] * sh[11] * (-3.f * yy + 4.f * zz - xx) +
SH_C3[3] * sh[12] * -3.f * 2.f * yz +
SH_C3[4] * sh[13] * -2.f * xy +
SH_C3[5] * sh[14] * -2.f * yz +
SH_C3[6] * sh[15] * -3.f * 2.f * xy);
dRGBdz += (
SH_C3[1] * sh[10] * xy +
SH_C3[2] * sh[11] * 4.f * 2.f * yz +
SH_C3[3] * sh[12] * 3.f * (2.f * zz - xx - yy) +
SH_C3[4] * sh[13] * 4.f * 2.f * xz +
SH_C3[5] * sh[14] * (xx - yy));
}
}
}
// The view direction is an input to the computation. View direction
// is influenced by the Gaussian's mean, so SHs gradients
// must propagate back into 3D position.
glm::vec3 dL_ddir(glm::dot(dRGBdx, dL_dRGB), glm::dot(dRGBdy, dL_dRGB), glm::dot(dRGBdz, dL_dRGB));
// Account for normalization of direction
float3 dL_dmean = dnormvdv(float3{ dir_orig.x, dir_orig.y, dir_orig.z }, float3{ dL_ddir.x, dL_ddir.y, dL_ddir.z });
// Gradients of loss w.r.t. Gaussian means, but only the portion
// that is caused because the mean affects the view-dependent color.
// Additional mean gradient is accumulated in below methods.
dL_dmeans[idx] += glm::vec3(dL_dmean.x, dL_dmean.y, dL_dmean.z);
}
// Backward version of the rendering procedure.
template <uint32_t C>
__global__ void __launch_bounds__(BLOCK_X * BLOCK_Y)
renderCUDA(
const uint2* __restrict__ ranges,
const uint32_t* __restrict__ point_list,
int W, int H,
float focal_x, float focal_y,
const float* __restrict__ bg_color,
const float2* __restrict__ points_xy_image,
const float4* __restrict__ normal_opacity,
const float* __restrict__ transMats,
const float* __restrict__ colors,
const float* __restrict__ depths,
const float* __restrict__ final_Ts,
const uint32_t* __restrict__ n_contrib,
const float* __restrict__ dL_dpixels,
const float* __restrict__ dL_depths,
float * __restrict__ dL_dtransMat,
float3* __restrict__ dL_dmean2D,
float* __restrict__ dL_dnormal3D,
float* __restrict__ dL_dopacity,
float* __restrict__ dL_dcolors)
{
// We rasterize again. Compute necessary block info.
auto block = cg::this_thread_block();
const uint32_t horizontal_blocks = (W + BLOCK_X - 1) / BLOCK_X;
const uint2 pix_min = { block.group_index().x * BLOCK_X, block.group_index().y * BLOCK_Y };
const uint2 pix_max = { min(pix_min.x + BLOCK_X, W), min(pix_min.y + BLOCK_Y , H) };
const uint2 pix = { pix_min.x + block.thread_index().x, pix_min.y + block.thread_index().y };
const uint32_t pix_id = W * pix.y + pix.x;
const float2 pixf = {(float)pix.x, (float)pix.y};
const bool inside = pix.x < W&& pix.y < H;
const uint2 range = ranges[block.group_index().y * horizontal_blocks + block.group_index().x];
const int rounds = ((range.y - range.x + BLOCK_SIZE - 1) / BLOCK_SIZE);
bool done = !inside;
int toDo = range.y - range.x;
__shared__ int collected_id[BLOCK_SIZE];
__shared__ float2 collected_xy[BLOCK_SIZE];
__shared__ float4 collected_normal_opacity[BLOCK_SIZE];
__shared__ float collected_colors[C * BLOCK_SIZE];
__shared__ float3 collected_Tu[BLOCK_SIZE];
__shared__ float3 collected_Tv[BLOCK_SIZE];
__shared__ float3 collected_Tw[BLOCK_SIZE];
// __shared__ float collected_depths[BLOCK_SIZE];
// In the forward, we stored the final value for T, the
// product of all (1 - alpha) factors.
const float T_final = inside ? final_Ts[pix_id] : 0;
float T = T_final;
// We start from the back. The ID of the last contributing
// Gaussian is known from each pixel from the forward.
uint32_t contributor = toDo;
const int last_contributor = inside ? n_contrib[pix_id] : 0;
float accum_rec[C] = { 0 };
float dL_dpixel[C];
#if RENDER_AXUTILITY
float dL_dreg;
float dL_ddepth;
float dL_daccum;
float dL_dnormal2D[3];
const int median_contributor = inside ? n_contrib[pix_id + H * W] : 0;
float dL_dmedian_depth;
float dL_dmax_dweight;
if (inside) {
dL_ddepth = dL_depths[DEPTH_OFFSET * H * W + pix_id];
dL_daccum = dL_depths[ALPHA_OFFSET * H * W + pix_id];
dL_dreg = dL_depths[DISTORTION_OFFSET * H * W + pix_id];
for (int i = 0; i < 3; i++)
dL_dnormal2D[i] = dL_depths[(NORMAL_OFFSET + i) * H * W + pix_id];
dL_dmedian_depth = dL_depths[MIDDEPTH_OFFSET * H * W + pix_id];
// dL_dmax_dweight = dL_depths[MEDIAN_WEIGHT_OFFSET * H * W + pix_id];
}
// for compute gradient with respect to depth and normal
float last_depth = 0;
float last_normal[3] = { 0 };
float accum_depth_rec = 0;
float accum_alpha_rec = 0;
float accum_normal_rec[3] = {0};
// for compute gradient with respect to the distortion map
const float final_D = inside ? final_Ts[pix_id + H * W] : 0;
const float final_D2 = inside ? final_Ts[pix_id + 2 * H * W] : 0;
const float final_A = 1 - T_final;
float last_dL_dT = 0;
#endif
if (inside){
for (int i = 0; i < C; i++)
dL_dpixel[i] = dL_dpixels[i * H * W + pix_id];
}
float last_alpha = 0;
float last_color[C] = { 0 };
// Gradient of pixel coordinate w.r.t. normalized
// screen-space viewport corrdinates (-1 to 1)
const float ddelx_dx = 0.5 * W;
const float ddely_dy = 0.5 * H;
// Traverse all Gaussians
for (int i = 0; i < rounds; i++, toDo -= BLOCK_SIZE)
{
// Load auxiliary data into shared memory, start in the BACK
// and load them in revers order.
block.sync();
const int progress = i * BLOCK_SIZE + block.thread_rank();
if (range.x + progress < range.y)
{
const int coll_id = point_list[range.y - progress - 1];
collected_id[block.thread_rank()] = coll_id;
collected_xy[block.thread_rank()] = points_xy_image[coll_id];
collected_normal_opacity[block.thread_rank()] = normal_opacity[coll_id];
collected_Tu[block.thread_rank()] = {transMats[9 * coll_id+0], transMats[9 * coll_id+1], transMats[9 * coll_id+2]};
collected_Tv[block.thread_rank()] = {transMats[9 * coll_id+3], transMats[9 * coll_id+4], transMats[9 * coll_id+5]};
collected_Tw[block.thread_rank()] = {transMats[9 * coll_id+6], transMats[9 * coll_id+7], transMats[9 * coll_id+8]};
for (int i = 0; i < C; i++)
collected_colors[i * BLOCK_SIZE + block.thread_rank()] = colors[coll_id * C + i];
// collected_depths[block.thread_rank()] = depths[coll_id];
}
block.sync();
// Iterate over Gaussians
for (int j = 0; !done && j < min(BLOCK_SIZE, toDo); j++)
{
// Keep track of current Gaussian ID. Skip, if this one
// is behind the last contributor for this pixel.
contributor--;
if (contributor >= last_contributor)
continue;
// compute ray-splat intersection as before
// Fisrt compute two homogeneous planes, See Eq. (8)
const float2 xy = collected_xy[j];
const float3 Tu = collected_Tu[j];
const float3 Tv = collected_Tv[j];
const float3 Tw = collected_Tw[j];
float3 k = pix.x * Tw - Tu;
float3 l = pix.y * Tw - Tv;
float3 p = cross(k, l);
if (p.z == 0.0) continue;
float2 s = {p.x / p.z, p.y / p.z};
float rho3d = (s.x * s.x + s.y * s.y);
float2 d = {xy.x - pixf.x, xy.y - pixf.y};
float rho2d = FilterInvSquare * (d.x * d.x + d.y * d.y);
float rho = min(rho3d, rho2d);
// compute depth
float c_d = (s.x * Tw.x + s.y * Tw.y) + Tw.z; // Tw * [u,v,1]
// if a point is too small, its depth is not reliable?
// c_d = (rho3d <= rho2d) ? c_d : Tw.z;
if (c_d < near_n) continue;
float4 nor_o = collected_normal_opacity[j];
float normal[3] = {nor_o.x, nor_o.y, nor_o.z};
float opa = nor_o.w;
// accumulations
float power = -0.5f * rho;
if (power > 0.0f)
continue;
const float G = exp(power);
const float alpha = min(0.99f, opa * G);
if (alpha < 1.0f / 255.0f)
continue;
T = T / (1.f - alpha);
const float dchannel_dcolor = alpha * T;
const float w = alpha * T;
// Propagate gradients to per-Gaussian colors and keep
// gradients w.r.t. alpha (blending factor for a Gaussian/pixel
// pair).
float dL_dalpha = 0.0f;
const int global_id = collected_id[j];
for (int ch = 0; ch < C; ch++)
{
const float c = collected_colors[ch * BLOCK_SIZE + j];
// Update last color (to be used in the next iteration)
accum_rec[ch] = last_alpha * last_color[ch] + (1.f - last_alpha) * accum_rec[ch];
last_color[ch] = c;
const float dL_dchannel = dL_dpixel[ch];
dL_dalpha += (c - accum_rec[ch]) * dL_dchannel;
// Update the gradients w.r.t. color of the Gaussian.
// Atomic, since this pixel is just one of potentially
// many that were affected by this Gaussian.
atomicAdd(&(dL_dcolors[global_id * C + ch]), dchannel_dcolor * dL_dchannel);
}
float dL_dz = 0.0f;
float dL_dweight = 0;
#if RENDER_AXUTILITY
const float m_d = far_n / (far_n - near_n) * (1 - near_n / c_d);
const float dmd_dd = (far_n * near_n) / ((far_n - near_n) * c_d * c_d);
if (contributor == median_contributor-1) {
dL_dz += dL_dmedian_depth;
// dL_dweight += dL_dmax_dweight;
}
#if DETACH_WEIGHT
// if not detached weight, sometimes
// it will bia toward creating extragated 2D Gaussians near front
dL_dweight += 0;
#else
dL_dweight += (final_D2 + m_d * m_d * final_A - 2 * m_d * final_D) * dL_dreg;
#endif
dL_dalpha += dL_dweight - last_dL_dT;
// propagate the current weight W_{i} to next weight W_{i-1}
last_dL_dT = dL_dweight * alpha + (1 - alpha) * last_dL_dT;
const float dL_dmd = 2.0f * (T * alpha) * (m_d * final_A - final_D) * dL_dreg;
dL_dz += dL_dmd * dmd_dd;
// Propagate gradients w.r.t ray-splat depths
accum_depth_rec = last_alpha * last_depth + (1.f - last_alpha) * accum_depth_rec;
last_depth = c_d;
dL_dalpha += (c_d - accum_depth_rec) * dL_ddepth;
// Propagate gradients w.r.t. color ray-splat alphas
accum_alpha_rec = last_alpha * 1.0 + (1.f - last_alpha) * accum_alpha_rec;
dL_dalpha += (1 - accum_alpha_rec) * dL_daccum;
// Propagate gradients to per-Gaussian normals
for (int ch = 0; ch < 3; ch++) {
accum_normal_rec[ch] = last_alpha * last_normal[ch] + (1.f - last_alpha) * accum_normal_rec[ch];
last_normal[ch] = normal[ch];
dL_dalpha += (normal[ch] - accum_normal_rec[ch]) * dL_dnormal2D[ch];
atomicAdd((&dL_dnormal3D[global_id * 3 + ch]), alpha * T * dL_dnormal2D[ch]);
}
#endif
dL_dalpha *= T;
// Update last alpha (to be used in the next iteration)
last_alpha = alpha;
// Account for fact that alpha also influences how much of
// the background color is added if nothing left to blend
float bg_dot_dpixel = 0;
for (int i = 0; i < C; i++)
bg_dot_dpixel += bg_color[i] * dL_dpixel[i];
dL_dalpha += (-T_final / (1.f - alpha)) * bg_dot_dpixel;
// Helpful reusable temporary variables
const float dL_dG = nor_o.w * dL_dalpha;
#if RENDER_AXUTILITY
dL_dz += alpha * T * dL_ddepth;
#endif
if (rho3d <= rho2d) {
// Update gradients w.r.t. covariance of Gaussian 3x3 (T)
const float2 dL_ds = {
dL_dG * -G * s.x + dL_dz * Tw.x,
dL_dG * -G * s.y + dL_dz * Tw.y
};
const float3 dz_dTw = {s.x, s.y, 1.0};
const float dsx_pz = dL_ds.x / p.z;
const float dsy_pz = dL_ds.y / p.z;
const float3 dL_dp = {dsx_pz, dsy_pz, -(dsx_pz * s.x + dsy_pz * s.y)};
const float3 dL_dk = cross(l, dL_dp);
const float3 dL_dl = cross(dL_dp, k);
const float3 dL_dTu = {-dL_dk.x, -dL_dk.y, -dL_dk.z};
const float3 dL_dTv = {-dL_dl.x, -dL_dl.y, -dL_dl.z};
const float3 dL_dTw = {
pixf.x * dL_dk.x + pixf.y * dL_dl.x + dL_dz * dz_dTw.x,
pixf.x * dL_dk.y + pixf.y * dL_dl.y + dL_dz * dz_dTw.y,
pixf.x * dL_dk.z + pixf.y * dL_dl.z + dL_dz * dz_dTw.z};
// Update gradients w.r.t. 3D covariance (3x3 matrix)
atomicAdd(&dL_dtransMat[global_id * 9 + 0], dL_dTu.x);
atomicAdd(&dL_dtransMat[global_id * 9 + 1], dL_dTu.y);
atomicAdd(&dL_dtransMat[global_id * 9 + 2], dL_dTu.z);
atomicAdd(&dL_dtransMat[global_id * 9 + 3], dL_dTv.x);
atomicAdd(&dL_dtransMat[global_id * 9 + 4], dL_dTv.y);
atomicAdd(&dL_dtransMat[global_id * 9 + 5], dL_dTv.z);
atomicAdd(&dL_dtransMat[global_id * 9 + 6], dL_dTw.x);
atomicAdd(&dL_dtransMat[global_id * 9 + 7], dL_dTw.y);
atomicAdd(&dL_dtransMat[global_id * 9 + 8], dL_dTw.z);
} else {
// // Update gradients w.r.t. center of Gaussian 2D mean position
const float dG_ddelx = -G * FilterInvSquare * d.x;
const float dG_ddely = -G * FilterInvSquare * d.y;
atomicAdd(&dL_dmean2D[global_id].x, dL_dG * dG_ddelx); // not scaled
atomicAdd(&dL_dmean2D[global_id].y, dL_dG * dG_ddely); // not scaled
// // Propagate the gradients of depth
atomicAdd(&dL_dtransMat[global_id * 9 + 6], s.x * dL_dz);
atomicAdd(&dL_dtransMat[global_id * 9 + 7], s.y * dL_dz);
atomicAdd(&dL_dtransMat[global_id * 9 + 8], dL_dz);
}
// Update gradients w.r.t. opacity of the Gaussian
atomicAdd(&(dL_dopacity[global_id]), G * dL_dalpha);
}
}
}
__device__ void compute_transmat_aabb(
int idx,
const float* Ts_precomp,
const float3* p_origs,
const glm::vec2* scales,
const glm::vec4* rots,
const float* projmatrix,
const float* viewmatrix,
const int W, const int H,
const float3* dL_dnormals,
const float3* dL_dmean2Ds,
float* dL_dTs,
glm::vec3* dL_dmeans,
glm::vec2* dL_dscales,
glm::vec4* dL_drots)
{
glm::mat3 T;
float3 normal;
glm::mat3x4 P;
glm::mat3 R;
glm::mat3 S;
float3 p_orig;
glm::vec4 rot;
glm::vec2 scale;
// Get transformation matrix of the Gaussian
if (Ts_precomp != nullptr) {
T = glm::mat3(
Ts_precomp[idx * 9 + 0], Ts_precomp[idx * 9 + 1], Ts_precomp[idx * 9 + 2],
Ts_precomp[idx * 9 + 3], Ts_precomp[idx * 9 + 4], Ts_precomp[idx * 9 + 5],
Ts_precomp[idx * 9 + 6], Ts_precomp[idx * 9 + 7], Ts_precomp[idx * 9 + 8]
);
normal = {0.0, 0.0, 0.0};
} else {
p_orig = p_origs[idx];
rot = rots[idx];
scale = scales[idx];
R = quat_to_rotmat(rot);
S = scale_to_mat(scale, 1.0f);
glm::mat3 L = R * S;
glm::mat3x4 M = glm::mat3x4(
glm::vec4(L[0], 0.0),
glm::vec4(L[1], 0.0),
glm::vec4(p_orig.x, p_orig.y, p_orig.z, 1)
);
glm::mat4 world2ndc = glm::mat4(
projmatrix[0], projmatrix[4], projmatrix[8], projmatrix[12],
projmatrix[1], projmatrix[5], projmatrix[9], projmatrix[13],
projmatrix[2], projmatrix[6], projmatrix[10], projmatrix[14],
projmatrix[3], projmatrix[7], projmatrix[11], projmatrix[15]
);
glm::mat3x4 ndc2pix = glm::mat3x4(
glm::vec4(float(W) / 2.0, 0.0, 0.0, float(W-1) / 2.0),
glm::vec4(0.0, float(H) / 2.0, 0.0, float(H-1) / 2.0),
glm::vec4(0.0, 0.0, 0.0, 1.0)
);
P = world2ndc * ndc2pix;
T = glm::transpose(M) * P;
normal = transformVec4x3({L[2].x, L[2].y, L[2].z}, viewmatrix);
}
// Update gradients w.r.t. transformation matrix of the Gaussian
glm::mat3 dL_dT = glm::mat3(
dL_dTs[idx*9+0], dL_dTs[idx*9+1], dL_dTs[idx*9+2],
dL_dTs[idx*9+3], dL_dTs[idx*9+4], dL_dTs[idx*9+5],
dL_dTs[idx*9+6], dL_dTs[idx*9+7], dL_dTs[idx*9+8]
);
float3 dL_dmean2D = dL_dmean2Ds[idx];
if(dL_dmean2D.x != 0 || dL_dmean2D.y != 0)
{
glm::vec3 t_vec = glm::vec3(9.0f, 9.0f, -1.0f);
float d = glm::dot(t_vec, T[2] * T[2]);
glm::vec3 f_vec = t_vec * (1.0f / d);
glm::vec3 dL_dT0 = dL_dmean2D.x * f_vec * T[2];
glm::vec3 dL_dT1 = dL_dmean2D.y * f_vec * T[2];
glm::vec3 dL_dT3 = dL_dmean2D.x * f_vec * T[0] + dL_dmean2D.y * f_vec * T[1];
glm::vec3 dL_df = dL_dmean2D.x * T[0] * T[2] + dL_dmean2D.y * T[1] * T[2];
float dL_dd = glm::dot(dL_df, f_vec) * (-1.0 / d);
glm::vec3 dd_dT3 = t_vec * T[2] * 2.0f;
dL_dT3 += dL_dd * dd_dT3;
dL_dT[0] += dL_dT0;
dL_dT[1] += dL_dT1;
dL_dT[2] += dL_dT3;
if (Ts_precomp != nullptr) {
dL_dTs[idx * 9 + 0] = dL_dT[0].x;
dL_dTs[idx * 9 + 1] = dL_dT[0].y;
dL_dTs[idx * 9 + 2] = dL_dT[0].z;
dL_dTs[idx * 9 + 3] = dL_dT[1].x;
dL_dTs[idx * 9 + 4] = dL_dT[1].y;
dL_dTs[idx * 9 + 5] = dL_dT[1].z;
dL_dTs[idx * 9 + 6] = dL_dT[2].x;
dL_dTs[idx * 9 + 7] = dL_dT[2].y;
dL_dTs[idx * 9 + 8] = dL_dT[2].z;
return;
}
}
if (Ts_precomp != nullptr) return;
// Update gradients w.r.t. scaling, rotation, position of the Gaussian
glm::mat3x4 dL_dM = P * glm::transpose(dL_dT);
float3 dL_dtn = transformVec4x3Transpose(dL_dnormals[idx], viewmatrix);
#if DUAL_VISIABLE
float3 p_view = transformPoint4x3(p_orig, viewmatrix);
float cos = -sumf3(p_view * normal);
float multiplier = cos > 0 ? 1: -1;
dL_dtn = multiplier * dL_dtn;
#endif
glm::mat3 dL_dRS = glm::mat3(
glm::vec3(dL_dM[0]),
glm::vec3(dL_dM[1]),
glm::vec3(dL_dtn.x, dL_dtn.y, dL_dtn.z)
);
glm::mat3 dL_dR = glm::mat3(
dL_dRS[0] * glm::vec3(scale.x),
dL_dRS[1] * glm::vec3(scale.y),
dL_dRS[2]);
dL_drots[idx] = quat_to_rotmat_vjp(rot, dL_dR);
dL_dscales[idx] = glm::vec2(
(float)glm::dot(dL_dRS[0], R[0]),
(float)glm::dot(dL_dRS[1], R[1])
);
dL_dmeans[idx] = glm::vec3(dL_dM[2]);
}
template<int C>
__global__ void preprocessCUDA(
int P, int D, int M,
const float3* means3D,
const float* transMats,
const int* radii,
const float* shs,
const bool* clamped,
const glm::vec2* scales,
const glm::vec4* rotations,
const float scale_modifier,
const float* viewmatrix,
const float* projmatrix,
const float focal_x,
const float focal_y,
const float tan_fovx,
const float tan_fovy,
const glm::vec3* campos,
// grad input
float* dL_dtransMats,
const float* dL_dnormal3Ds,
float* dL_dcolors,
float* dL_dshs,
float3* dL_dmean2Ds,
glm::vec3* dL_dmean3Ds,
glm::vec2* dL_dscales,
glm::vec4* dL_drots)
{
auto idx = cg::this_grid().thread_rank();
if (idx >= P || !(radii[idx] > 0))
return;
const int W = int(focal_x * tan_fovx * 2);
const int H = int(focal_y * tan_fovy * 2);
const float * Ts_precomp = (scales) ? nullptr : transMats;
compute_transmat_aabb(
idx,
Ts_precomp,
means3D, scales, rotations,
projmatrix, viewmatrix, W, H,
(float3*)dL_dnormal3Ds,
dL_dmean2Ds,
(dL_dtransMats),
dL_dmean3Ds,
dL_dscales,
dL_drots
);
if (shs)
computeColorFromSH(idx, D, M, (glm::vec3*)means3D, *campos, shs, clamped, (glm::vec3*)dL_dcolors, (glm::vec3*)dL_dmean3Ds, (glm::vec3*)dL_dshs);
// hack the gradient here for densitification
float depth = transMats[idx * 9 + 8];
dL_dmean2Ds[idx].x = dL_dtransMats[idx * 9 + 2] * depth * 0.5 * float(W); // to ndc
dL_dmean2Ds[idx].y = dL_dtransMats[idx * 9 + 5] * depth * 0.5 * float(H); // to ndc
}
void BACKWARD::preprocess(
int P, int D, int M,
const float3* means3D,
const int* radii,
const float* shs,
const bool* clamped,
const glm::vec2* scales,
const glm::vec4* rotations,
const float scale_modifier,
const float* transMats,
const float* viewmatrix,
const float* projmatrix,
const float focal_x, const float focal_y,
const float tan_fovx, const float tan_fovy,
const glm::vec3* campos,
float3* dL_dmean2Ds,
const float* dL_dnormal3Ds,
float* dL_dtransMats,
float* dL_dcolors,
float* dL_dshs,
glm::vec3* dL_dmean3Ds,
glm::vec2* dL_dscales,
glm::vec4* dL_drots)
{
preprocessCUDA<NUM_CHANNELS><< <(P + 255) / 256, 256 >> > (
P, D, M,
(float3*)means3D,
transMats,
radii,
shs,
clamped,
(glm::vec2*)scales,
(glm::vec4*)rotations,
scale_modifier,
viewmatrix,
projmatrix,
focal_x,
focal_y,
tan_fovx,
tan_fovy,
campos,
dL_dtransMats,
dL_dnormal3Ds,
dL_dcolors,
dL_dshs,
dL_dmean2Ds,
dL_dmean3Ds,
dL_dscales,
dL_drots
);
}
void BACKWARD::render(
const dim3 grid, const dim3 block,
const uint2* ranges,
const uint32_t* point_list,
int W, int H,
float focal_x, float focal_y,
const float* bg_color,
const float2* means2D,
const float4* normal_opacity,
const float* colors,
const float* transMats,
const float* depths,
const float* final_Ts,
const uint32_t* n_contrib,
const float* dL_dpixels,
const float* dL_depths,
float * dL_dtransMat,
float3* dL_dmean2D,
float* dL_dnormal3D,
float* dL_dopacity,
float* dL_dcolors)
{
renderCUDA<NUM_CHANNELS> << <grid, block >> >(
ranges,
point_list,
W, H,
focal_x, focal_y,
bg_color,
means2D,
normal_opacity,
transMats,
colors,
depths,
final_Ts,
n_contrib,
dL_dpixels,
dL_depths,
dL_dtransMat,
dL_dmean2D,
dL_dnormal3D,
dL_dopacity,
dL_dcolors
);
}