yslan's picture
init
7f51798
raw
history blame
3.94 kB
# EMD approximation module (based on auction algorithm)
# memory complexity: O(n)
# time complexity: O(n^2 * iter)
# author: Minghua Liu
# Input:
# xyz1, xyz2: [#batch, #points, 3]
# where xyz1 is the predicted point cloud and xyz2 is the ground truth point cloud
# two point clouds should have same size and be normalized to [0, 1]
# #points should be a multiple of 1024
# #batch should be no greater than 512
# eps is a parameter which balances the error rate and the speed of convergence
# iters is the number of iteration
# we only calculate gradient for xyz1
# Output:
# dist: [#batch, #points], sqrt(dist) -> L2 distance
# assignment: [#batch, #points], index of the matched point in the ground truth point cloud
# the result is an approximation and the assignment is not guranteed to be a bijection
import time
import numpy as np
import torch
from torch import nn
from torch.autograd import Function
import emd
class emdFunction(Function):
@staticmethod
def forward(ctx, xyz1, xyz2, eps, iters):
batchsize, n, _ = xyz1.size()
_, m, _ = xyz2.size()
assert(n == m)
assert(xyz1.size()[0] == xyz2.size()[0])
#assert(n % 1024 == 0)
assert(batchsize <= 512)
xyz1 = xyz1.contiguous().float().cuda()
xyz2 = xyz2.contiguous().float().cuda()
dist = torch.zeros(batchsize, n, device='cuda').contiguous()
assignment = torch.zeros(batchsize, n, device='cuda', dtype=torch.int32).contiguous() - 1
assignment_inv = torch.zeros(batchsize, m, device='cuda', dtype=torch.int32).contiguous() - 1
price = torch.zeros(batchsize, m, device='cuda').contiguous()
bid = torch.zeros(batchsize, n, device='cuda', dtype=torch.int32).contiguous()
bid_increments = torch.zeros(batchsize, n, device='cuda').contiguous()
max_increments = torch.zeros(batchsize, m, device='cuda').contiguous()
unass_idx = torch.zeros(batchsize * n, device='cuda', dtype=torch.int32).contiguous()
max_idx = torch.zeros(batchsize * m, device='cuda', dtype=torch.int32).contiguous()
unass_cnt = torch.zeros(512, dtype=torch.int32, device='cuda').contiguous()
unass_cnt_sum = torch.zeros(512, dtype=torch.int32, device='cuda').contiguous()
cnt_tmp = torch.zeros(512, dtype=torch.int32, device='cuda').contiguous()
emd.forward(xyz1, xyz2, dist, assignment, price, assignment_inv, bid, bid_increments, max_increments, unass_idx, unass_cnt, unass_cnt_sum, cnt_tmp, max_idx, eps, iters)
ctx.save_for_backward(xyz1, xyz2, assignment)
return dist, assignment
@staticmethod
def backward(ctx, graddist, gradidx):
xyz1, xyz2, assignment = ctx.saved_tensors
graddist = graddist.contiguous()
gradxyz1 = torch.zeros(xyz1.size(), device='cuda').contiguous()
gradxyz2 = torch.zeros(xyz2.size(), device='cuda').contiguous()
emd.backward(xyz1, xyz2, gradxyz1, graddist, assignment)
return gradxyz1, gradxyz2, None, None
class emdModule(nn.Module):
def __init__(self):
super(emdModule, self).__init__()
def forward(self, input1, input2, eps, iters):
return emdFunction.apply(input1, input2, eps, iters)
def test_emd():
x1 = torch.rand(20, 8192, 3).cuda()
x2 = torch.rand(20, 8192, 3).cuda()
emd = emdModule()
start_time = time.perf_counter()
dis, assigment = emd(x1, x2, 0.05, 3000)
# print(dis.shape) # B N
print("Input_size: ", x1.shape)
print("Runtime: %lfs" % (time.perf_counter() - start_time))
print("EMD: %lf" % np.sqrt(dis.cpu()).mean())
print("|set(assignment)|: %d" % assigment.unique().numel())
assigment = assigment.cpu().numpy()
assigment = np.expand_dims(assigment, -1)
x2 = np.take_along_axis(x2, assigment, axis = 1)
d = (x1 - x2) * (x1 - x2)
print("Verified EMD: %lf" % np.sqrt(d.cpu().sum(-1)).mean())
# test_emd()