Spaces:
Running
on
Zero
Running
on
Zero
# EMD approximation module (based on auction algorithm) | |
# memory complexity: O(n) | |
# time complexity: O(n^2 * iter) | |
# author: Minghua Liu | |
# Input: | |
# xyz1, xyz2: [#batch, #points, 3] | |
# where xyz1 is the predicted point cloud and xyz2 is the ground truth point cloud | |
# two point clouds should have same size and be normalized to [0, 1] | |
# #points should be a multiple of 1024 | |
# #batch should be no greater than 512 | |
# eps is a parameter which balances the error rate and the speed of convergence | |
# iters is the number of iteration | |
# we only calculate gradient for xyz1 | |
# Output: | |
# dist: [#batch, #points], sqrt(dist) -> L2 distance | |
# assignment: [#batch, #points], index of the matched point in the ground truth point cloud | |
# the result is an approximation and the assignment is not guranteed to be a bijection | |
import time | |
import numpy as np | |
import torch | |
from torch import nn | |
from torch.autograd import Function | |
import emd | |
class emdFunction(Function): | |
def forward(ctx, xyz1, xyz2, eps, iters): | |
batchsize, n, _ = xyz1.size() | |
_, m, _ = xyz2.size() | |
assert(n == m) | |
assert(xyz1.size()[0] == xyz2.size()[0]) | |
#assert(n % 1024 == 0) | |
assert(batchsize <= 512) | |
xyz1 = xyz1.contiguous().float().cuda() | |
xyz2 = xyz2.contiguous().float().cuda() | |
dist = torch.zeros(batchsize, n, device='cuda').contiguous() | |
assignment = torch.zeros(batchsize, n, device='cuda', dtype=torch.int32).contiguous() - 1 | |
assignment_inv = torch.zeros(batchsize, m, device='cuda', dtype=torch.int32).contiguous() - 1 | |
price = torch.zeros(batchsize, m, device='cuda').contiguous() | |
bid = torch.zeros(batchsize, n, device='cuda', dtype=torch.int32).contiguous() | |
bid_increments = torch.zeros(batchsize, n, device='cuda').contiguous() | |
max_increments = torch.zeros(batchsize, m, device='cuda').contiguous() | |
unass_idx = torch.zeros(batchsize * n, device='cuda', dtype=torch.int32).contiguous() | |
max_idx = torch.zeros(batchsize * m, device='cuda', dtype=torch.int32).contiguous() | |
unass_cnt = torch.zeros(512, dtype=torch.int32, device='cuda').contiguous() | |
unass_cnt_sum = torch.zeros(512, dtype=torch.int32, device='cuda').contiguous() | |
cnt_tmp = torch.zeros(512, dtype=torch.int32, device='cuda').contiguous() | |
emd.forward(xyz1, xyz2, dist, assignment, price, assignment_inv, bid, bid_increments, max_increments, unass_idx, unass_cnt, unass_cnt_sum, cnt_tmp, max_idx, eps, iters) | |
ctx.save_for_backward(xyz1, xyz2, assignment) | |
return dist, assignment | |
def backward(ctx, graddist, gradidx): | |
xyz1, xyz2, assignment = ctx.saved_tensors | |
graddist = graddist.contiguous() | |
gradxyz1 = torch.zeros(xyz1.size(), device='cuda').contiguous() | |
gradxyz2 = torch.zeros(xyz2.size(), device='cuda').contiguous() | |
emd.backward(xyz1, xyz2, gradxyz1, graddist, assignment) | |
return gradxyz1, gradxyz2, None, None | |
class emdModule(nn.Module): | |
def __init__(self): | |
super(emdModule, self).__init__() | |
def forward(self, input1, input2, eps, iters): | |
return emdFunction.apply(input1, input2, eps, iters) | |
def test_emd(): | |
x1 = torch.rand(20, 8192, 3).cuda() | |
x2 = torch.rand(20, 8192, 3).cuda() | |
emd = emdModule() | |
start_time = time.perf_counter() | |
dis, assigment = emd(x1, x2, 0.05, 3000) | |
# print(dis.shape) # B N | |
print("Input_size: ", x1.shape) | |
print("Runtime: %lfs" % (time.perf_counter() - start_time)) | |
print("EMD: %lf" % np.sqrt(dis.cpu()).mean()) | |
print("|set(assignment)|: %d" % assigment.unique().numel()) | |
assigment = assigment.cpu().numpy() | |
assigment = np.expand_dims(assigment, -1) | |
x2 = np.take_along_axis(x2, assigment, axis = 1) | |
d = (x1 - x2) * (x1 - x2) | |
print("Verified EMD: %lf" % np.sqrt(d.cpu().sum(-1)).mean()) | |
# test_emd() | |