Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import numpy as np | |
import math | |
from pdb import set_trace as st | |
from .dit_models import DiT, DiTBlock, DiT_models, get_2d_sincos_pos_embed | |
class DiT_Triplane_V1(DiT): | |
""" | |
1. merge the 3*H*W as L, and 8 as C only | |
2. pachify, flat into 224*(224*3) with 8 channels for pachify | |
3. unpachify accordingly | |
""" | |
def __init__(self, | |
input_size=32, | |
patch_size=2, | |
in_channels=4, | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4, | |
class_dropout_prob=0.1, | |
num_classes=1000, | |
learn_sigma=False): | |
input_size = (input_size, input_size*3) | |
super().__init__(input_size, patch_size, in_channels//3, hidden_size, # type: ignore | |
depth, num_heads, mlp_ratio, class_dropout_prob, | |
num_classes, learn_sigma) | |
def initialize_weights(self): | |
"""all the same except the PE part | |
""" | |
# Initialize transformer layers: | |
def _basic_init(module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
self.apply(_basic_init) | |
# Initialize (and freeze) pos_embed by sin-cos embedding: | |
pos_embed = get_2d_sincos_pos_embed( | |
self.pos_embed.shape[-1], self.x_embedder.grid_size) | |
# st() | |
self.pos_embed.data.copy_( | |
torch.from_numpy(pos_embed).float().unsqueeze(0)) | |
# ! untouched below | |
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d): | |
w = self.x_embedder.proj.weight.data | |
nn.init.xavier_uniform_(w.view([w.shape[0], -1])) | |
nn.init.constant_(self.x_embedder.proj.bias, 0) | |
# Initialize label embedding table: | |
if self.y_embedder is not None: | |
nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02) | |
# Initialize timestep embedding MLP: | |
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) | |
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) | |
# Zero-out adaLN modulation layers in DiT blocks: | |
for block in self.blocks: | |
nn.init.constant_(block.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(block.adaLN_modulation[-1].bias, 0) | |
# Zero-out output layers: | |
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) | |
nn.init.constant_(self.final_layer.linear.weight, 0) | |
nn.init.constant_(self.final_layer.linear.bias, 0) | |
def unpatchify(self, x): | |
# TODO | |
""" | |
x: (N, L, patch_size**2 * C) | |
imgs: (N, H, W, C) | |
""" | |
c = self.out_channels | |
p = self.x_embedder.patch_size[0] # type: ignore | |
h = w = int((x.shape[1]//3)**0.5) | |
assert h * w * 3 == x.shape[1] # merge triplane 3 dims with hw | |
x = x.reshape(shape=(x.shape[0], h, w, 3, p, p, c)) | |
x = torch.einsum('nhwzpqc->nczhpwq', x) | |
imgs = x.reshape(shape=(x.shape[0], c*3, h * p, h * p)) # type: ignore | |
return imgs # B 8*3 H W | |
def forward(self, x, t, y=None): | |
""" | |
Forward pass of DiT. | |
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
t: (N,) tensor of diffusion timesteps | |
y: (N,) tensor of class labels | |
""" | |
# ! merge tri-channel into w chanenl for 3D-aware TX | |
x = x.reshape(x.shape[0], -1, 3, x.shape[2], x.shape[3]) # B 8 3 H W | |
x = x.permute(0,1,3,4,2).reshape(x.shape[0], -1, x.shape[-2], x.shape[-1]*3) # B 8 H W83 | |
x = self.x_embedder( | |
x) + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2 | |
t = self.t_embedder(t) # (N, D) | |
if self.y_embedder is not None: | |
assert y is not None | |
y = self.y_embedder(y, self.training) # (N, D) | |
c = t + y # (N, D) | |
else: | |
c = t | |
for block in self.blocks: | |
x = block(x, c) # (N, T, D) | |
x = self.final_layer(x, c) # (N, T, patch_size ** 2 * out_channels) | |
x = self.unpatchify(x) # (N, out_channels, H, W) | |
return x | |
class DiT_Triplane_V1_learnedPE(DiT_Triplane_V1): | |
""" | |
1. learned PE, default cos/sin wave | |
""" | |
def __init__(self, | |
input_size=32, | |
patch_size=2, | |
in_channels=4, | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4, | |
class_dropout_prob=0.1, | |
num_classes=1000, | |
learn_sigma=True): | |
super().__init__(input_size, patch_size, in_channels, hidden_size, | |
depth, num_heads, mlp_ratio, class_dropout_prob, | |
num_classes, learn_sigma) | |
class DiT_Triplane_V1_fixed3DPE(DiT_Triplane_V1): | |
""" | |
1. 3D aware PE, fixed | |
""" | |
def __init__(self, | |
input_size=32, | |
patch_size=2, | |
in_channels=4, | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4, | |
class_dropout_prob=0.1, | |
num_classes=1000, | |
learn_sigma=True): | |
super().__init__(input_size, patch_size, in_channels, hidden_size, | |
depth, num_heads, mlp_ratio, class_dropout_prob, | |
num_classes, learn_sigma) | |
class DiT_Triplane_V1_learned3DPE(DiT_Triplane_V1): | |
""" | |
1. init with 3D aware PE, learnable | |
""" | |
def __init__(self, | |
input_size=32, | |
patch_size=2, | |
in_channels=4, | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4, | |
class_dropout_prob=0.1, | |
num_classes=1000, | |
learn_sigma=True): | |
super().__init__(input_size, patch_size, in_channels, hidden_size, | |
depth, num_heads, mlp_ratio, class_dropout_prob, | |
num_classes, learn_sigma) | |
def V1_Triplane_DiT_S_2(**kwargs): | |
return DiT_Triplane_V1(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs) | |
def V1_Triplane_DiT_S_4(**kwargs): | |
return DiT_Triplane_V1(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs) | |
def V1_Triplane_DiT_S_8(**kwargs): | |
return DiT_Triplane_V1(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs) | |
def V1_Triplane_DiT_B_8(**kwargs): | |
return DiT_Triplane_V1(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs) | |
def V1_Triplane_DiT_B_16(**kwargs): # ours cfg | |
return DiT_Triplane_V1(depth=12, hidden_size=768, patch_size=16, num_heads=12, **kwargs) | |
DiT_models.update({ | |
'v1-T-DiT-S/2': V1_Triplane_DiT_S_2, | |
'v1-T-DiT-S/4': V1_Triplane_DiT_S_4, | |
'v1-T-DiT-S/8': V1_Triplane_DiT_S_8, | |
'v1-T-DiT-B/8': V1_Triplane_DiT_B_8, | |
'v1-T-DiT-B/16': V1_Triplane_DiT_B_16, | |
}) |