Spaces:
Running
on
Zero
Running
on
Zero
import torch.nn as nn | |
from inspect import isfunction | |
import math | |
import torch | |
import torch.nn.functional as F | |
from torch import nn, einsum | |
from einops import rearrange, repeat | |
from pdb import set_trace as st | |
from timm.models.vision_transformer import Mlp | |
from ldm.modules.attention import MemoryEfficientCrossAttention | |
from .dit_models_xformers import DiT, get_2d_sincos_pos_embed, DiTBlock, FinalLayer, t2i_modulate, PixelArtTextCondDiTBlock, T2IFinalLayer, approx_gelu | |
from torch.nn import LayerNorm | |
from vit.vit_triplane import XYZPosEmbed | |
class DiT_TriLatent(DiT): | |
# DiT with 3D_aware operations | |
def __init__( | |
self, | |
input_size=32, | |
patch_size=2, | |
in_channels=4, | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4, | |
class_dropout_prob=0.1, | |
num_classes=1000, | |
learn_sigma=True, | |
mixing_logit_init=-3, | |
mixed_prediction=True, | |
context_dim=False, | |
roll_out=False, | |
vit_blk=DiTBlock, | |
final_layer_blk=FinalLayer, | |
): | |
super().__init__(input_size, patch_size, in_channels, hidden_size, | |
depth, num_heads, mlp_ratio, class_dropout_prob, | |
num_classes, learn_sigma, mixing_logit_init, | |
mixed_prediction, context_dim, roll_out, vit_blk, | |
final_layer_blk) | |
assert self.roll_out | |
def init_PE_3D_aware(self): | |
self.pos_embed = nn.Parameter(torch.zeros( | |
1, self.plane_n * self.x_embedder.num_patches, self.embed_dim), | |
requires_grad=False) | |
# Initialize (and freeze) pos_embed by sin-cos embedding: | |
p = int(self.x_embedder.num_patches**0.5) | |
D = self.pos_embed.shape[-1] | |
grid_size = (self.plane_n, p * p) # B n HW C | |
pos_embed = get_2d_sincos_pos_embed(D, grid_size).reshape( | |
self.plane_n * p * p, D) # H*W, D | |
self.pos_embed.data.copy_( | |
torch.from_numpy(pos_embed).float().unsqueeze(0)) | |
def initialize_weights(self): | |
super().initialize_weights() | |
# ! add 3d-aware PE | |
self.init_PE_3D_aware() | |
def forward(self, | |
x, | |
timesteps=None, | |
context=None, | |
y=None, | |
get_attr='', | |
**kwargs): | |
""" | |
Forward pass of DiT. | |
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
t: (N,) tensor of diffusion timesteps | |
y: (N,) tensor of class labels | |
""" | |
# t = timesteps | |
assert context is not None | |
t = self.t_embedder(timesteps) # (N, D) | |
# if self.roll_out: # ! | |
x = rearrange(x, 'b (c n) h w->(b n) c h w', | |
n=3) # downsample with same conv | |
x = self.x_embedder(x) # (b n) c h/f w/f | |
x = rearrange(x, '(b n) l c -> b (n l) c', n=3) | |
x = x + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2 | |
# if self.roll_out: # ! roll-out in the L dim, not B dim. add condition to all tokens. | |
# x = rearrange(x, '(b n) l c ->b (n l) c', n=3) | |
# assert context.ndim == 2 | |
if isinstance(context, dict): | |
context = context['crossattn'] # sgm conditioner compat | |
context = self.clip_text_proj(context) | |
# c = t + context | |
# else: | |
# c = t # BS 1024 | |
for blk_idx, block in enumerate(self.blocks): | |
# if self.roll_out: | |
if False: | |
if blk_idx % 2 == 0: # with-in plane self attention | |
x = rearrange(x, 'b (n l) c -> (b n) l c', n=3) | |
x = block(x, repeat(t, 'b c -> (b n) c ', n=3), # TODO, calculate once | |
repeat(context, 'b l c -> (b n) l c ', n=3)) # (N, T, D) | |
else: # global attention | |
x = rearrange(x, '(b n) l c -> b (n l) c ', n=self.plane_n) | |
x = block(x, t, context) # (N, T, D) | |
else: | |
x = block(x, t, context) # (N, T, D) | |
# todo later | |
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) | |
if self.roll_out: # move n from L to B axis | |
x = rearrange(x, 'b (n l) c ->(b n) l c', n=3) | |
x = self.unpatchify(x) # (N, out_channels, H, W) | |
if self.roll_out: # move n from L to B axis | |
x = rearrange(x, '(b n) c h w -> b (c n) h w', n=3) | |
# x = rearrange(x, 'b n) c h w -> b (n c) h w', n=3) | |
# cast to float32 for better accuracy | |
x = x.to(torch.float32).contiguous() | |
# st() | |
return x | |
class DiT_TriLatent_PixelArt(DiT_TriLatent): | |
# DiT with 3D_aware operations | |
def __init__( | |
self, | |
input_size=32, | |
patch_size=2, | |
in_channels=4, | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4, | |
class_dropout_prob=0.1, | |
num_classes=1000, | |
learn_sigma=True, | |
mixing_logit_init=-3, | |
mixed_prediction=True, | |
context_dim=False, | |
roll_out=False, | |
vit_blk=DiTBlock, | |
final_layer_blk=FinalLayer, | |
): | |
super().__init__(input_size, patch_size, in_channels, hidden_size, | |
depth, num_heads, mlp_ratio, class_dropout_prob, | |
num_classes, learn_sigma, mixing_logit_init, | |
mixed_prediction, context_dim, roll_out, vit_blk, | |
final_layer_blk) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True)) | |
del self.clip_text_proj | |
self.cap_embedder = nn.Sequential( # TODO, init with zero here. | |
LayerNorm(context_dim), | |
nn.Linear( | |
context_dim, | |
hidden_size, | |
), | |
) | |
nn.init.constant_(self.cap_embedder[-1].weight, 0) | |
nn.init.constant_(self.cap_embedder[-1].bias, 0) | |
def forward(self, | |
x, | |
timesteps=None, | |
context=None, | |
y=None, | |
get_attr='', | |
**kwargs): | |
""" | |
Forward pass of DiT. | |
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
t: (N,) tensor of diffusion timesteps | |
y: (N,) tensor of class labels | |
""" | |
# t = timesteps | |
assert context is not None | |
clip_cls_token = self.cap_embedder(context['vector']) # pooled | |
t = self.t_embedder(timesteps) + clip_cls_token # (N, D) | |
t0 = self.adaLN_modulation(t) # single-adaLN, B 6144 | |
# if self.roll_out: # ! | |
x = rearrange(x, 'b (c n) h w->(b n) c h w', | |
n=3) # downsample with same conv | |
x = self.x_embedder(x) # (b n) c h/f w/f | |
x = rearrange(x, '(b n) l c -> b (n l) c', n=3) | |
x = x + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2 | |
# if self.roll_out: # ! roll-out in the L dim, not B dim. add condition to all tokens. | |
# x = rearrange(x, '(b n) l c ->b (n l) c', n=3) | |
# assert context.ndim == 2 | |
if isinstance(context, dict): | |
context = context['crossattn'] # sgm conditioner compat | |
# context = self.clip_text_proj(context) # ! with rmsnorm here for | |
# c = t + context | |
# else: | |
# c = t # BS 1024 | |
for blk_idx, block in enumerate(self.blocks): | |
x = block(x, t0, context) # (N, T, D) | |
# todo later | |
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) | |
if self.roll_out: # move n from L to B axis | |
x = rearrange(x, 'b (n l) c ->(b n) l c', n=3) | |
x = self.unpatchify(x) # (N, out_channels, H, W) | |
if self.roll_out: # move n from L to B axis | |
x = rearrange(x, '(b n) c h w -> b (c n) h w', n=3) | |
# x = rearrange(x, 'b n) c h w -> b (n c) h w', n=3) | |
# cast to float32 for better accuracy | |
x = x.to(torch.float32).contiguous() | |
# st() | |
return x | |
# ! compat issue | |
def forward_with_cfg(self, x, t, context, cfg_scale): | |
""" | |
Forward pass of SiT, but also batches the unconSiTional forward pass for classifier-free guidance. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb | |
# half = x[: len(x) // 2] | |
# combined = torch.cat([half, half], dim=0) | |
eps = self.forward(x, t, context) | |
# eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:] | |
# eps, rest = model_out[:, :3], model_out[:, 3:] | |
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) | |
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) | |
eps = torch.cat([half_eps, half_eps], dim=0) | |
return eps | |
# PCD, general single-stage model. | |
class DiT_PCD_PixelArt(DiT_TriLatent_PixelArt): | |
# DiT with 3D_aware operations | |
def __init__( | |
self, | |
input_size=32, | |
patch_size=2, | |
in_channels=4, | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4, | |
class_dropout_prob=0.1, | |
num_classes=1000, | |
learn_sigma=True, | |
mixing_logit_init=-3, | |
mixed_prediction=True, | |
context_dim=False, | |
roll_out=False, | |
vit_blk=PixelArtTextCondDiTBlock, | |
final_layer_blk=FinalLayer, | |
): | |
super().__init__(input_size, patch_size, in_channels, hidden_size, | |
depth, num_heads, mlp_ratio, class_dropout_prob, | |
num_classes, learn_sigma, mixing_logit_init, | |
mixed_prediction, context_dim, roll_out, vit_blk, | |
final_layer_blk) | |
# an MLP to transform the input 19-dim feature to high-dim. | |
self.x_embedder = Mlp(in_features=in_channels, | |
hidden_features=hidden_size, | |
out_features=hidden_size, | |
act_layer=approx_gelu, | |
drop=0) | |
del self.pos_embed | |
def forward(self, | |
x, | |
timesteps=None, | |
context=None, | |
y=None, | |
get_attr='', | |
**kwargs): | |
""" | |
Forward pass of DiT. | |
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
t: (N,) tensor of diffusion timesteps | |
y: (N,) tensor of class labels | |
""" | |
# t = timesteps | |
assert context is not None | |
clip_cls_token = self.cap_embedder(context['caption_vector']) # pooled | |
t = self.t_embedder(timesteps) + clip_cls_token # (N, D) | |
t0 = self.adaLN_modulation(t) # single-adaLN, B 6144 | |
x = self.x_embedder(x) | |
# assert context.ndim == 2 | |
if isinstance(context, dict): | |
context = context['caption_crossattn'] # sgm conditioner compat | |
# loop dit block | |
for blk_idx, block in enumerate(self.blocks): | |
x = block(x, t0, context) # (N, T, D) | |
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) | |
# cast to float32 for better accuracy | |
x = x.to(torch.float32).contiguous() | |
return x | |
# ! two-stage version, the second-stage here, for text pretraining. | |
class DiT_PCD_PixelArt_tofeat(DiT_PCD_PixelArt): | |
# DiT with 3D_aware operations | |
def __init__( | |
self, | |
input_size=32, | |
patch_size=2, | |
in_channels=4, | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4, | |
class_dropout_prob=0.1, | |
num_classes=1000, | |
learn_sigma=True, | |
mixing_logit_init=-3, | |
mixed_prediction=True, | |
context_dim=False, | |
roll_out=False, | |
vit_blk=DiTBlock, | |
final_layer_blk=FinalLayer, | |
use_pe_cond=True, | |
): | |
super().__init__(input_size, patch_size, in_channels, hidden_size, | |
depth, num_heads, mlp_ratio, class_dropout_prob, | |
num_classes, learn_sigma, mixing_logit_init, | |
mixed_prediction, context_dim, roll_out, PixelArtTextCondDiTBlock, | |
final_layer_blk) | |
self.use_pe_cond = use_pe_cond | |
if use_pe_cond: | |
self.xyz_pos_embed = XYZPosEmbed(hidden_size) | |
else: | |
self.x_embedder = Mlp(in_features=in_channels+3, | |
hidden_features=hidden_size, | |
out_features=hidden_size, | |
act_layer=approx_gelu, | |
drop=0) | |
def forward(self, | |
x, | |
timesteps=None, | |
context=None, | |
y=None, | |
get_attr='', | |
**kwargs): | |
""" | |
Forward pass of DiT. | |
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
t: (N,) tensor of diffusion timesteps | |
y: (N,) tensor of class labels | |
""" | |
# t = timesteps | |
assert isinstance(context, dict) | |
# dino_spatial_token = rearrange(context['concat'], 'b v l c -> b (v l) c') # flatten MV dino features. | |
# t = self.t_embedder(timesteps) | |
clip_cls_token = self.cap_embedder(context['caption_vector']) # pooled | |
caption_crossattn, fps_xyz = context['caption_crossattn'], context['fps-xyz'] | |
t = self.t_embedder(timesteps) + clip_cls_token # (N, D) | |
t0 = self.adaLN_modulation(t) # single-adaLN, B 6144 | |
if self.use_pe_cond: | |
x = self.x_embedder(x) + self.xyz_pos_embed(fps_xyz) # point-wise addition | |
else: # use concat to add info | |
x = torch.cat([fps_xyz, x], dim=-1) | |
x = self.x_embedder(x) | |
# add a norm layer here, as in point-e | |
# x = self.ln_pre(x) | |
for blk_idx, block in enumerate(self.blocks): | |
x = block(x, t0, caption_crossattn) | |
# add a norm layer here, as in point-e | |
# x = self.ln_post(x) | |
x = self.final_layer(x, t) # no loss on the xyz side | |
x = x.to(torch.float32).contiguous() | |
return x | |
################################################################################# | |
# DiT_TriLatent Configs # | |
################################################################################# | |
def DiT_XL_2(**kwargs): | |
return DiT_TriLatent(depth=28, | |
hidden_size=1152, | |
patch_size=2, | |
num_heads=16, | |
**kwargs) | |
def DiT_L_2(**kwargs): | |
return DiT_TriLatent(depth=24, | |
hidden_size=1024, | |
patch_size=2, | |
num_heads=16, | |
**kwargs) | |
def DiT_B_2(**kwargs): | |
return DiT_TriLatent(depth=12, | |
hidden_size=768, | |
patch_size=2, | |
num_heads=12, | |
**kwargs) | |
def DiT_B_1(**kwargs): | |
return DiT_TriLatent(depth=12, | |
hidden_size=768, | |
patch_size=1, | |
num_heads=12, | |
**kwargs) | |
def DiT_B_Pixelart_2(**kwargs): | |
return DiT_TriLatent_PixelArt(depth=12, | |
hidden_size=768, | |
patch_size=2, | |
num_heads=12, | |
# vit_blk=PixelArtTextCondDiTBlock, | |
final_layer_blk=T2IFinalLayer, | |
**kwargs) | |
def DiT_L_Pixelart_2(**kwargs): | |
return DiT_TriLatent_PixelArt(depth=24, | |
hidden_size=1024, | |
patch_size=2, | |
num_heads=16, | |
# vit_blk=PixelArtTextCondDiTBlock, | |
final_layer_blk=T2IFinalLayer, | |
**kwargs) | |
# PCD-DiT | |
def DiT_PCD_B(**kwargs): | |
return DiT_PCD_PixelArt(depth=12, | |
hidden_size=768, | |
patch_size=1, | |
num_heads=12, | |
**kwargs) | |
def DiT_PCD_L(**kwargs): | |
return DiT_PCD_PixelArt(depth=24, | |
hidden_size=1024, | |
patch_size=1, | |
num_heads=16, | |
**kwargs) | |
def DiT_PCD_B_tofeat(**kwargs): | |
return DiT_PCD_PixelArt_tofeat(depth=12, | |
hidden_size=768, | |
patch_size=1, | |
num_heads=12, | |
**kwargs) | |
def DiT_PCD_L_tofeat(**kwargs): | |
return DiT_PCD_PixelArt_tofeat(depth=24, | |
hidden_size=1024, | |
patch_size=1, | |
num_heads=16, | |
**kwargs) | |
def DiT_PCD_XL_tofeat(**kwargs): | |
return DiT_PCD_PixelArt_tofeat(depth=28, | |
hidden_size=1152, | |
patch_size=1, | |
num_heads=16, | |
**kwargs) | |
DiT_models = { | |
'DiT-XL/2': DiT_XL_2, | |
'DiT-L/2': DiT_L_2, | |
'DiT-PixelArt-L/2': DiT_L_Pixelart_2, | |
'DiT-PixelArt-B/2': DiT_B_Pixelart_2, | |
'DiT-B/2': DiT_B_2, | |
'DiT-B/1': DiT_B_1, | |
'DiT-PCD-B': DiT_PCD_B, | |
'DiT-PCD-L': DiT_PCD_L, | |
'DiT-PCD-B-stage2-xyz2feat': DiT_PCD_B_tofeat, | |
'DiT-PCD-L-stage2-xyz2feat': DiT_PCD_L_tofeat, | |
'DiT-PCD-XL-stage2-xyz2feat': DiT_PCD_XL_tofeat, | |
# 'DiT-PCD-L-stage1-text': DiT_PCD_L_tofeat, | |
} | |