Spaces:
Running
on
Zero
Running
on
Zero
""" | |
from ControlNet/cldm/cldm.py | |
""" | |
import copy | |
import functools | |
import json | |
import os | |
from pathlib import Path | |
from pdb import set_trace as st | |
from typing import Any | |
import einops | |
import blobfile as bf | |
import imageio | |
import numpy as np | |
import torch as th | |
import torch.distributed as dist | |
import torchvision | |
from PIL import Image | |
from torch.nn.parallel.distributed import DistributedDataParallel as DDP | |
from torch.optim import AdamW | |
from torch.utils.tensorboard.writer import SummaryWriter | |
from tqdm import tqdm | |
from guided_diffusion import dist_util, logger | |
from guided_diffusion.fp16_util import MixedPrecisionTrainer | |
from guided_diffusion.nn import update_ema | |
from guided_diffusion.resample import LossAwareSampler, UniformSampler | |
# from .train_util import TrainLoop3DRec | |
from guided_diffusion.train_util import (TrainLoop, calc_average_loss, | |
find_ema_checkpoint, | |
find_resume_checkpoint, | |
get_blob_logdir, log_loss_dict, | |
log_rec3d_loss_dict, | |
parse_resume_step_from_filename) | |
from guided_diffusion.gaussian_diffusion import ModelMeanType | |
import dnnlib | |
from dnnlib.util import requires_grad | |
from dnnlib.util import calculate_adaptive_weight | |
from ..train_util_diffusion import TrainLoop3DDiffusion | |
from ..cvD.nvsD_canoD import TrainLoop3DcvD_nvsD_canoD | |
from guided_diffusion.continuous_diffusion_utils import get_mixed_prediction, different_p_q_objectives, kl_per_group_vada, kl_balancer | |
from .train_util_diffusion_lsgm_noD_joint import TrainLoop3DDiffusionLSGMJointnoD # joint diffusion and rec class | |
class TrainLoop3DDiffusionLSGM_Control(TrainLoop3DDiffusionLSGMJointnoD): | |
def __init__(self, | |
*, | |
rec_model, | |
denoise_model, | |
diffusion, | |
sde_diffusion, | |
control_model, | |
control_key, | |
only_mid_control, | |
loss_class, | |
data, | |
eval_data, | |
batch_size, | |
microbatch, | |
lr, | |
ema_rate, | |
log_interval, | |
eval_interval, | |
save_interval, | |
resume_checkpoint, | |
resume_cldm_checkpoint=None, | |
use_fp16=False, | |
fp16_scale_growth=0.001, | |
schedule_sampler=None, | |
weight_decay=0, | |
lr_anneal_steps=0, | |
iterations=10001, | |
ignore_resume_opt=False, | |
freeze_ae=False, | |
denoised_ae=True, | |
triplane_scaling_divider=10, | |
use_amp=False, | |
diffusion_input_size=224, | |
**kwargs): | |
super().__init__(rec_model=rec_model, | |
denoise_model=denoise_model, | |
diffusion=diffusion, | |
sde_diffusion=sde_diffusion, | |
loss_class=loss_class, | |
data=data, | |
eval_data=eval_data, | |
batch_size=batch_size, | |
microbatch=microbatch, | |
lr=lr, | |
ema_rate=ema_rate, | |
log_interval=log_interval, | |
eval_interval=eval_interval, | |
save_interval=save_interval, | |
resume_checkpoint=resume_checkpoint, | |
resume_cldm_checkpoint=None, | |
use_fp16=use_fp16, | |
fp16_scale_growth=fp16_scale_growth, | |
schedule_sampler=schedule_sampler, | |
weight_decay=weight_decay, | |
lr_anneal_steps=lr_anneal_steps, | |
iterations=iterations, | |
ignore_resume_opt=ignore_resume_opt, | |
freeze_ae=freeze_ae, | |
denoised_ae=denoised_ae, | |
triplane_scaling_divider=triplane_scaling_divider, | |
use_amp=use_amp, | |
diffusion_input_size=diffusion_input_size, | |
**kwargs) | |
self.resume_cldm_checkpoint = resume_cldm_checkpoint | |
self.control_model = control_model | |
self.control_key = control_key | |
self.only_mid_control = only_mid_control | |
self.control_scales = [1.0] * 13 | |
self.sd_locked = True | |
self._setup_control_model() | |
def _setup_control_model(self): | |
requires_grad(self.rec_model, False) | |
requires_grad(self.ddpm_model, self.sd_locked) | |
self.mp_cldm_trainer = MixedPrecisionTrainer( | |
model=self.control_model, | |
use_fp16=self.use_fp16, | |
fp16_scale_growth=self.fp16_scale_growth, | |
use_amp=self.use_amp, | |
model_name='cldm') | |
self.ddp_control_model = DDP( | |
self.control_model, | |
device_ids=[dist_util.dev()], | |
output_device=dist_util.dev(), | |
broadcast_buffers=False, | |
bucket_cap_mb=128, | |
find_unused_parameters=False, | |
) | |
# ! load trainable copy | |
try: | |
logger.log(f"load pretrained controlnet, not trainable copy.") | |
self._load_and_sync_parameters(model=self.control_model, | |
model_name='cldm', | |
resume_checkpoint=self.resume_cldm_checkpoint, | |
) # if available | |
except: | |
logger.log(f"load trainable copy to controlnet") | |
self._load_and_sync_parameters( | |
model=self.control_model, | |
model_name='ddpm') # load pre-trained SD | |
cldm_param = [{ | |
'name': 'cldm.parameters()', | |
'params': self.control_model.parameters(), | |
}] | |
if self.sde_diffusion.args.unfix_logit: | |
self.ddpm_model.mixing_logit.requires_grad_(True) | |
cldm_param.append({ | |
'name': 'mixing_logit', | |
'params': self.ddpm_model.mixing_logit, | |
}) | |
self.opt_cldm = AdamW(cldm_param, | |
lr=self.lr, | |
weight_decay=self.weight_decay) | |
if self.sd_locked: | |
del self.opt | |
# def _load_model(self): | |
# super()._load_model() | |
# # ! load pre-trained "SD" and controlNet also | |
# self._load_and_sync_parameters(model=self.contro, | |
# model_name='cldm') # | |
# def _setup_opt(self): | |
# TODO, two optims groups. | |
# for rec_param_group in self._init_optim_groups(self.rec_model): | |
# self.opt.add_param_group(rec_param_group) | |
def run_loop(self): | |
while (not self.lr_anneal_steps | |
or self.step + self.resume_step < self.lr_anneal_steps): | |
# let all processes sync up before starting with a new epoch of training | |
# dist_util.synchronize() | |
batch = next(self.data) | |
self.run_step(batch, step='cldm_step') | |
if self.step % self.log_interval == 0 and dist_util.get_rank( | |
) == 0: | |
out = logger.dumpkvs() | |
# * log to tensorboard | |
for k, v in out.items(): | |
self.writer.add_scalar(f'Loss/{k}', v, | |
self.step + self.resume_step) | |
if self.step % self.eval_interval == 0 and self.step != 0: | |
# if self.step % self.eval_interval == 0: | |
if dist_util.get_rank() == 0: | |
# self.eval_ddpm_sample() | |
self.eval_cldm() | |
# if self.sde_diffusion.args.train_vae: | |
# self.eval_loop() | |
th.cuda.empty_cache() | |
dist_util.synchronize() | |
if self.step % self.save_interval == 0: | |
self.save(self.mp_cldm_trainer, | |
self.mp_cldm_trainer.model_name) | |
if os.environ.get("DIFFUSION_TRAINING_TEST", | |
"") and self.step > 0: | |
return | |
self.step += 1 | |
if self.step > self.iterations: | |
print('reached maximum iterations, exiting') | |
# Save the last checkpoint if it wasn't already saved. | |
if (self.step - 1) % self.save_interval != 0: | |
self.save(self.mp_cldm_trainer, | |
self.mp_cldm_trainer.model_name) | |
# if self.sde_diffusion.args.train_vae: | |
# self.save(self.mp_trainer_rec, | |
# self.mp_trainer_rec.model_name) | |
exit() | |
# Save the last checkpoint if it wasn't already saved. | |
if (self.step - 1) % self.save_interval != 0: | |
self.save( | |
self.mp_cldm_trainer, | |
self.mp_cldm_trainer.model_name) # rec and ddpm all fixed. | |
# st() | |
# self.save(self.mp_trainer_canonical_cvD, 'cvD') | |
def _update_cldm_ema(self): | |
for rate, params in zip(self.ema_rate, self.ema_cldm_params): | |
update_ema(params, self.mp_cldm_trainer.master_params, rate=rate) | |
def run_step(self, batch, step='cldm_step'): | |
# if step == 'diffusion_step_rec': | |
if step == 'cldm_step': | |
self.cldm_train_step(batch) | |
# if took_step_ddpm: | |
# self._update_cldm_ema() | |
self._anneal_lr() | |
self.log_step() | |
def get_c_input(self, batch, bs=None, *args, **kwargs): | |
# x, c = super().get_input(batch, self.first_stage_key, *args, **kwargs) | |
control = batch[self.control_key] | |
if bs is not None: | |
control = control[:bs] | |
# control = control.to(self.device) | |
# control = einops.rearrange(control, 'b h w c -> b c h w') | |
control = control.to(memory_format=th.contiguous_format).float() | |
# return x, dict(c_crossattn=[c], c_concat=[control]) | |
return dict(c_concat=[control]) | |
# for compatablity with p_sample, to lint | |
def apply_model_inference(self, x_noisy, t, c, model_kwargs={}): | |
control = self.ddp_control_model(x=x_noisy, | |
hint=th.cat(c['c_concat'], 1), | |
timesteps=t, | |
context=None) | |
control = [c * scale for c, scale in zip(control, self.control_scales)] | |
pred_params = self.ddp_ddpm_model( | |
x_noisy, t, **{ | |
**model_kwargs, 'control': control | |
}) | |
return pred_params | |
def apply_control_model(self, p_sample_batch, cond): | |
x_noisy, t, = (p_sample_batch[k] for k in ('eps_t_p', 't_p')) | |
control = self.ddp_control_model(x=x_noisy, | |
hint=th.cat(cond['c_concat'], 1), | |
timesteps=t, | |
context=None) | |
control = [c * scale for c, scale in zip(control, self.control_scales)] | |
return control | |
def apply_model(self, p_sample_batch, cond, model_kwargs={}): | |
control = self.apply_control_model(p_sample_batch, | |
cond) # len(control): 13 | |
return super().apply_model(p_sample_batch, **{ | |
**model_kwargs, 'control': control | |
}) | |
# ddpm + rec loss | |
def cldm_train_step(self, batch, behaviour='cano', *args, **kwargs): | |
""" | |
add sds grad to all ae predicted x_0 | |
""" | |
# ! enable the gradient of both models | |
requires_grad(self.ddp_control_model, True) | |
self.mp_cldm_trainer.zero_grad() # !!!! | |
batch_size = batch['img'].shape[0] | |
for i in range(0, batch_size, self.microbatch): | |
micro = { | |
k: | |
v[i:i + self.microbatch].to(dist_util.dev()) if isinstance( | |
v, th.Tensor) else v | |
for k, v in batch.items() | |
} | |
# =================================== ae part =================================== | |
with th.cuda.amp.autocast(dtype=th.float16, | |
enabled=self.mp_cldm_trainer.use_amp): | |
loss = th.tensor(0.).to(dist_util.dev()) | |
vae_out = self.ddp_rec_model( | |
img=micro['img_to_encoder'], | |
c=micro['c'], | |
behaviour='encoder_vae', | |
) # pred: (B, 3, 64, 64) | |
# eps = vae_out[self.latent_name] | |
eps = vae_out.pop(self.latent_name) | |
p_sample_batch = self.prepare_ddpm(eps) | |
cond = self.get_c_input(micro) | |
# ! running diffusion forward | |
ddpm_ret = self.apply_model(p_sample_batch, cond) | |
if self.sde_diffusion.args.p_rendering_loss: | |
target = micro | |
pred = self.ddp_rec_model( | |
# latent=vae_out, | |
latent={ | |
# **vae_out, | |
self.latent_name: | |
ddpm_ret['pred_x0_p'], | |
'latent_name': self.latent_name | |
}, | |
c=micro['c'], | |
behaviour=self.render_latent_behaviour) | |
# vae reconstruction loss | |
with self.ddp_control_model.no_sync(): # type: ignore | |
p_vae_recon_loss, rec_loss_dict = self.loss_class( | |
pred, target, test_mode=False) | |
log_rec3d_loss_dict(rec_loss_dict) | |
# log_rec3d_loss_dict( | |
# dict(p_vae_recon_loss=p_vae_recon_loss, )) | |
loss = p_vae_recon_loss + ddpm_ret['p_eps_objective'] # TODO, add obj_weight_t_p? | |
else: | |
loss = ddpm_ret['p_eps_objective'] | |
# ===================================================================== | |
self.mp_cldm_trainer.backward(loss) # joint gradient descent | |
# update ddpm accordingly | |
self.mp_cldm_trainer.optimize(self.opt_cldm) | |
if dist_util.get_rank() == 0 and self.step % 500 == 0: | |
self.log_control_images(vae_out, p_sample_batch, micro, | |
ddpm_ret) | |
def log_control_images(self, vae_out, p_sample_batch, micro, ddpm_ret): | |
eps_t_p, t_p, logsnr_p = (p_sample_batch[k] for k in ( | |
'eps_t_p', | |
't_p', | |
'logsnr_p', | |
)) | |
pred_eps_p = ddpm_ret['pred_eps_p'] | |
vae_out.pop('posterior') # for calculating kl loss | |
vae_out_for_pred = { | |
k: v[0:1].to(dist_util.dev()) if isinstance(v, th.Tensor) else v | |
for k, v in vae_out.items() | |
} | |
pred = self.ddp_rec_model(latent=vae_out_for_pred, | |
c=micro['c'][0:1], | |
behaviour=self.render_latent_behaviour) | |
assert isinstance(pred, dict) | |
pred_img = pred['image_raw'] | |
gt_img = micro['img'] | |
if 'depth' in micro: | |
gt_depth = micro['depth'] | |
if gt_depth.ndim == 3: | |
gt_depth = gt_depth.unsqueeze(1) | |
gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() - | |
gt_depth.min()) | |
else: | |
gt_depth = th.zeros_like(gt_img[:, 0:1, ...]) | |
if 'image_depth' in pred: | |
pred_depth = pred['image_depth'] | |
pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() - | |
pred_depth.min()) | |
else: | |
pred_depth = th.zeros_like(gt_depth) | |
gt_img = self.pool_128(gt_img) | |
gt_depth = self.pool_128(gt_depth) | |
cond = self.get_c_input(micro) | |
hint = th.cat(cond['c_concat'], 1) | |
gt_vis = th.cat([ | |
gt_img, | |
self.pool_128(hint), gt_img, | |
gt_depth.repeat_interleave(3, dim=1) | |
], | |
dim=-1)[0:1] # TODO, fail to load depth. range [0, 1] | |
# eps_t_p_3D = eps_t_p.reshape(batch_size, eps_t_p.shape[1]//3, 3, -1) # B C 3 L | |
noised_ae_pred = self.ddp_rec_model( | |
img=None, | |
c=micro['c'][0:1], | |
latent=eps_t_p[0:1] * self. | |
triplane_scaling_divider, # TODO, how to define the scale automatically | |
behaviour=self.render_latent_behaviour) | |
pred_x0 = self.sde_diffusion._predict_x0_from_eps( | |
eps_t_p, pred_eps_p, logsnr_p) # for VAE loss, denosied latent | |
# pred_xstart_3D | |
denoised_ae_pred = self.ddp_rec_model( | |
img=None, | |
c=micro['c'][0:1], | |
latent=pred_x0[0:1] * self. | |
triplane_scaling_divider, # TODO, how to define the scale automatically? | |
behaviour=self.render_latent_behaviour) | |
pred_vis = th.cat( | |
[ | |
self.pool_128(img) for img in ( | |
pred_img[0:1], | |
noised_ae_pred['image_raw'][0:1], | |
denoised_ae_pred['image_raw'][0:1], # controlnet result | |
pred_depth[0:1].repeat_interleave(3, dim=1)) | |
], | |
dim=-1) # B, 3, H, W | |
vis = th.cat([gt_vis, pred_vis], | |
dim=-2)[0].permute(1, 2, | |
0).cpu() # ! pred in range[-1, 1] | |
# vis_grid = torchvision.utils.make_grid(vis) # HWC | |
vis = vis.numpy() * 127.5 + 127.5 | |
vis = vis.clip(0, 255).astype(np.uint8) | |
Image.fromarray(vis).save( | |
f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t_p[0].item():3}.jpg' | |
) | |
print( | |
'log denoised vis to: ', | |
f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t_p[0].item():3}.jpg' | |
) | |
th.cuda.empty_cache() | |
def eval_cldm(self): | |
self.control_model.eval() | |
args = dnnlib.EasyDict( | |
dict( | |
batch_size=1, | |
image_size=self.diffusion_input_size, | |
denoise_in_channels=self.rec_model.decoder.triplane_decoder. | |
out_chans, # type: ignore | |
clip_denoised=False, | |
class_cond=False, | |
use_ddim=False)) | |
model_kwargs = {} | |
if args.class_cond: | |
classes = th.randint(low=0, | |
high=NUM_CLASSES, | |
size=(args.batch_size, ), | |
device=dist_util.dev()) | |
model_kwargs["y"] = classes | |
diffusion = self.diffusion | |
sample_fn = (diffusion.p_sample_loop | |
if not args.use_ddim else diffusion.ddim_sample_loop) | |
# for i, batch in enumerate(tqdm(self.eval_data)): | |
batch = next(iter(self.eval_data)) | |
# use the first frame as the condition now | |
novel_view_cond = { | |
k: v[0:1].to(dist_util.dev()) # .repeat_interleave( | |
# micro['img'].shape[0], 0) | |
for k, v in batch.items() | |
} | |
cond = self.get_c_input(novel_view_cond) | |
hint = th.cat(cond['c_concat'], 1) | |
# record cond images | |
torchvision.utils.save_image( | |
hint, | |
f'{logger.get_dir()}/{self.step + self.resume_step}_cond.jpg', | |
normalize=True, | |
value_range=(-1, 1)) | |
# broadcast to args.batch_size | |
cond = { | |
k: | |
[cond.repeat_interleave(args.batch_size, 0) for cond in cond_list] | |
for k, cond_list in cond.items() # list of Tensors | |
} | |
for i in range(1): | |
triplane_sample = sample_fn( | |
self, | |
( | |
args.batch_size, | |
self.rec_model.decoder.ldm_z_channels * 3, # type: ignore | |
self.diffusion_input_size, | |
self.diffusion_input_size), | |
cond=cond, | |
clip_denoised=args.clip_denoised, | |
model_kwargs=model_kwargs, | |
mixing_normal=True, # ! | |
device=dist_util.dev()) | |
th.cuda.empty_cache() | |
self.render_video_given_triplane( | |
triplane_sample, | |
self.rec_model, # compatible with join_model | |
name_prefix=f'{self.step + self.resume_step}_{i}') | |
del triplane_sample | |
th.cuda.empty_cache() | |
self.control_model.train() |