Spaces:
Running
on
Zero
Running
on
Zero
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary | |
# | |
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual | |
# property and proprietary rights in and to this material, related | |
# documentation and any modifications thereto. Any use, reproduction, | |
# disclosure or distribution of this material and related documentation | |
# without an express license agreement from NVIDIA CORPORATION or | |
# its affiliates is strictly prohibited. | |
from threading import local | |
import torch | |
import torch.nn as nn | |
from torch_utils import persistence | |
from .networks_stylegan2 import Generator as StyleGAN2Backbone | |
from .networks_stylegan2 import ToRGBLayer, SynthesisNetwork, MappingNetwork | |
from .volumetric_rendering.renderer import ImportanceRenderer | |
from .volumetric_rendering.ray_sampler import RaySampler, PatchRaySampler | |
import dnnlib | |
from pdb import set_trace as st | |
import math | |
import torch.nn.functional as F | |
import itertools | |
from ldm.modules.diffusionmodules.model import SimpleDecoder, Decoder | |
class TriPlaneGenerator(torch.nn.Module): | |
def __init__( | |
self, | |
z_dim, # Input latent (Z) dimensionality. | |
c_dim, # Conditioning label (C) dimensionality. | |
w_dim, # Intermediate latent (W) dimensionality. | |
img_resolution, # Output resolution. | |
img_channels, # Number of output color channels. | |
sr_num_fp16_res=0, | |
mapping_kwargs={}, # Arguments for MappingNetwork. | |
rendering_kwargs={}, | |
sr_kwargs={}, | |
bcg_synthesis_kwargs={}, | |
# pifu_kwargs={}, | |
# ada_kwargs={}, # not used, place holder | |
**synthesis_kwargs, # Arguments for SynthesisNetwork. | |
): | |
super().__init__() | |
self.z_dim = z_dim | |
self.c_dim = c_dim | |
self.w_dim = w_dim | |
self.img_resolution = img_resolution | |
self.img_channels = img_channels | |
self.renderer = ImportanceRenderer() | |
# if 'PatchRaySampler' in rendering_kwargs: | |
# self.ray_sampler = PatchRaySampler() | |
# else: | |
# self.ray_sampler = RaySampler() | |
self.backbone = StyleGAN2Backbone(z_dim, | |
c_dim, | |
w_dim, | |
img_resolution=256, | |
img_channels=32 * 3, | |
mapping_kwargs=mapping_kwargs, | |
**synthesis_kwargs) | |
self.superresolution = dnnlib.util.construct_class_by_name( | |
class_name=rendering_kwargs['superresolution_module'], | |
channels=32, | |
img_resolution=img_resolution, | |
sr_num_fp16_res=sr_num_fp16_res, | |
sr_antialias=rendering_kwargs['sr_antialias'], | |
**sr_kwargs) | |
# self.bcg_synthesis = None | |
if rendering_kwargs.get('use_background', False): | |
self.bcg_synthesis = SynthesisNetwork( | |
w_dim, | |
img_resolution=self.superresolution.input_resolution, | |
img_channels=32, | |
**bcg_synthesis_kwargs) | |
self.bcg_mapping = MappingNetwork(z_dim=z_dim, | |
c_dim=c_dim, | |
w_dim=w_dim, | |
num_ws=self.num_ws, | |
**mapping_kwargs) | |
# New mapping network for self-adaptive camera pose, dim = 3 | |
self.decoder = OSGDecoder( | |
32, { | |
'decoder_lr_mul': rendering_kwargs.get('decoder_lr_mul', 1), | |
'decoder_output_dim': 32 | |
}) | |
self.neural_rendering_resolution = 64 | |
self.rendering_kwargs = rendering_kwargs | |
self._last_planes = None | |
self.pool_256 = torch.nn.AdaptiveAvgPool2d((256, 256)) | |
def mapping(self, | |
z, | |
c, | |
truncation_psi=1, | |
truncation_cutoff=None, | |
update_emas=False): | |
if self.rendering_kwargs['c_gen_conditioning_zero']: | |
c = torch.zeros_like(c) | |
return self.backbone.mapping(z, | |
c * | |
self.rendering_kwargs.get('c_scale', 0), | |
truncation_psi=truncation_psi, | |
truncation_cutoff=truncation_cutoff, | |
update_emas=update_emas) | |
def synthesis(self, | |
ws, | |
c, | |
neural_rendering_resolution=None, | |
update_emas=False, | |
cache_backbone=False, | |
use_cached_backbone=False, | |
return_meta=False, | |
return_raw_only=False, | |
**synthesis_kwargs): | |
return_sampling_details_flag = self.rendering_kwargs.get( | |
'return_sampling_details_flag', False) | |
if return_sampling_details_flag: | |
return_meta = True | |
cam2world_matrix = c[:, :16].view(-1, 4, 4) | |
# cam2world_matrix = torch.eye(4, device=c.device).unsqueeze(0).repeat_interleave(c.shape[0], dim=0) | |
# c[:, :16] = cam2world_matrix.view(-1, 16) | |
intrinsics = c[:, 16:25].view(-1, 3, 3) | |
if neural_rendering_resolution is None: | |
neural_rendering_resolution = self.neural_rendering_resolution | |
else: | |
self.neural_rendering_resolution = neural_rendering_resolution | |
H = W = self.neural_rendering_resolution | |
# Create a batch of rays for volume rendering | |
ray_origins, ray_directions = self.ray_sampler( | |
cam2world_matrix, intrinsics, neural_rendering_resolution) | |
# Create triplanes by running StyleGAN backbone | |
N, M, _ = ray_origins.shape | |
if use_cached_backbone and self._last_planes is not None: | |
planes = self._last_planes | |
else: | |
planes = self.backbone.synthesis( | |
ws[:, :self.backbone.num_ws, :], # ws, BS 14 512 | |
update_emas=update_emas, | |
**synthesis_kwargs) | |
if cache_backbone: | |
self._last_planes = planes | |
# Reshape output into three 32-channel planes | |
planes = planes.view(len(planes), 3, 32, planes.shape[-2], | |
planes.shape[-1]) # BS 96 256 256 | |
# Perform volume rendering | |
# st() | |
rendering_details = self.renderer( | |
planes, | |
self.decoder, | |
ray_origins, | |
ray_directions, | |
self.rendering_kwargs, | |
# return_meta=True) | |
return_meta=return_meta) | |
# calibs = create_calib_matrix(c) | |
# all_coords = rendering_details['all_coords'] | |
# B, num_rays, S, _ = all_coords.shape | |
# all_coords_B3N = all_coords.reshape(B, -1, 3).permute(0,2,1) | |
# homo_coords = torch.cat([all_coords, torch.zeros_like(all_coords[..., :1])], -1) | |
# homo_coords[..., -1] = 1 | |
# homo_coords = homo_coords.reshape(homo_coords.shape[0], -1, 4) | |
# homo_coords = homo_coords.permute(0,2,1) | |
# xyz = calibs @ homo_coords | |
# xyz = xyz.permute(0,2,1).reshape(B, H, W, S, 4) | |
# st() | |
# xyz_proj = perspective(all_coords_B3N, calibs) | |
# xyz_proj = xyz_proj.permute(0,2,1).reshape(B, H, W, S, 3) # [0,0] - [1,1] | |
# st() | |
feature_samples, depth_samples, weights_samples = ( | |
rendering_details[k] | |
for k in ['feature_samples', 'depth_samples', 'weights_samples']) | |
if return_sampling_details_flag: | |
shape_synthesized = rendering_details['shape_synthesized'] | |
else: | |
shape_synthesized = None | |
# Reshape into 'raw' neural-rendered image | |
feature_image = feature_samples.permute(0, 2, 1).reshape( | |
N, feature_samples.shape[-1], H, W).contiguous() # B 32 H W | |
depth_image = depth_samples.permute(0, 2, 1).reshape(N, 1, H, W) | |
# Run superresolution to get final image | |
rgb_image = feature_image[:, :3] # B 3 H W | |
if not return_raw_only: | |
sr_image = self.superresolution( | |
rgb_image, | |
feature_image, | |
ws[:, -1:, :], # only use the last layer | |
noise_mode=self.rendering_kwargs['superresolution_noise_mode'], | |
**{ | |
k: synthesis_kwargs[k] | |
for k in synthesis_kwargs.keys() if k != 'noise_mode' | |
}) | |
else: | |
sr_image = rgb_image | |
ret_dict = { | |
'image': sr_image, | |
'image_raw': rgb_image, | |
'image_depth': depth_image, | |
'weights_samples': weights_samples, | |
'shape_synthesized': shape_synthesized | |
} | |
if return_meta: | |
ret_dict.update({ | |
# 'feature_image': feature_image, | |
'feature_volume': | |
rendering_details['feature_volume'], | |
'all_coords': | |
rendering_details['all_coords'], | |
'weights': | |
rendering_details['weights'], | |
}) | |
return ret_dict | |
def sample(self, | |
coordinates, | |
directions, | |
z, | |
c, | |
truncation_psi=1, | |
truncation_cutoff=None, | |
update_emas=False, | |
**synthesis_kwargs): | |
# Compute RGB features, density for arbitrary 3D coordinates. Mostly used for extracting shapes. | |
ws = self.mapping(z, | |
c, | |
truncation_psi=truncation_psi, | |
truncation_cutoff=truncation_cutoff, | |
update_emas=update_emas) | |
planes = self.backbone.synthesis(ws, | |
update_emas=update_emas, | |
**synthesis_kwargs) | |
planes = planes.view(len(planes), 3, 32, planes.shape[-2], | |
planes.shape[-1]) | |
return self.renderer.run_model(planes, self.decoder, coordinates, | |
directions, self.rendering_kwargs) | |
def sample_mixed(self, | |
coordinates, | |
directions, | |
ws, | |
truncation_psi=1, | |
truncation_cutoff=None, | |
update_emas=False, | |
**synthesis_kwargs): | |
# Same as sample, but expects latent vectors 'ws' instead of Gaussian noise 'z' | |
planes = self.backbone.synthesis(ws, | |
update_emas=update_emas, | |
**synthesis_kwargs) | |
planes = planes.view(len(planes), 3, 32, planes.shape[-2], | |
planes.shape[-1]) | |
return self.renderer.run_model(planes, self.decoder, coordinates, | |
directions, self.rendering_kwargs) | |
def forward(self, | |
z, | |
c, | |
truncation_psi=1, | |
truncation_cutoff=None, | |
neural_rendering_resolution=None, | |
update_emas=False, | |
cache_backbone=False, | |
use_cached_backbone=False, | |
**synthesis_kwargs): | |
# Render a batch of generated images. | |
ws = self.mapping(z, | |
c, | |
truncation_psi=truncation_psi, | |
truncation_cutoff=truncation_cutoff, | |
update_emas=update_emas) | |
return self.synthesis( | |
ws, | |
c, | |
update_emas=update_emas, | |
neural_rendering_resolution=neural_rendering_resolution, | |
cache_backbone=cache_backbone, | |
use_cached_backbone=use_cached_backbone, | |
**synthesis_kwargs) | |
from .networks_stylegan2 import FullyConnectedLayer | |
# class OSGDecoder(torch.nn.Module): | |
# def __init__(self, n_features, options): | |
# super().__init__() | |
# self.hidden_dim = 64 | |
# self.output_dim = options['decoder_output_dim'] | |
# self.n_features = n_features | |
# self.net = torch.nn.Sequential( | |
# FullyConnectedLayer(n_features, | |
# self.hidden_dim, | |
# lr_multiplier=options['decoder_lr_mul']), | |
# torch.nn.Softplus(), | |
# FullyConnectedLayer(self.hidden_dim, | |
# 1 + options['decoder_output_dim'], | |
# lr_multiplier=options['decoder_lr_mul'])) | |
# def forward(self, sampled_features, ray_directions): | |
# # Aggregate features | |
# sampled_features = sampled_features.mean(1) | |
# x = sampled_features | |
# N, M, C = x.shape | |
# x = x.view(N * M, C) | |
# x = self.net(x) | |
# x = x.view(N, M, -1) | |
# rgb = torch.sigmoid(x[..., 1:]) * ( | |
# 1 + 2 * 0.001) - 0.001 # Uses sigmoid clamping from MipNeRF | |
# sigma = x[..., 0:1] | |
# return {'rgb': rgb, 'sigma': sigma} | |
class OSGDecoder(torch.nn.Module): | |
def __init__(self, n_features, options): | |
super().__init__() | |
self.hidden_dim = 64 | |
self.decoder_output_dim = options['decoder_output_dim'] | |
self.net = torch.nn.Sequential( | |
FullyConnectedLayer(n_features, | |
self.hidden_dim, | |
lr_multiplier=options['decoder_lr_mul']), | |
torch.nn.Softplus(), | |
FullyConnectedLayer(self.hidden_dim, | |
1 + options['decoder_output_dim'], | |
lr_multiplier=options['decoder_lr_mul'])) | |
self.activation = options.get('decoder_activation', 'sigmoid') | |
def forward(self, sampled_features, ray_directions): | |
# Aggregate features | |
sampled_features = sampled_features.mean(1) | |
x = sampled_features | |
N, M, C = x.shape | |
x = x.view(N * M, C) | |
x = self.net(x) | |
x = x.view(N, M, -1) | |
rgb = x[..., 1:] | |
sigma = x[..., 0:1] | |
if self.activation == "sigmoid": | |
# Original EG3D | |
rgb = torch.sigmoid(rgb) * (1 + 2 * 0.001) - 0.001 | |
elif self.activation == "lrelu": | |
# StyleGAN2-style, use with toRGB | |
rgb = torch.nn.functional.leaky_relu(rgb, 0.2, | |
inplace=True) * math.sqrt(2) | |
return {'rgb': rgb, 'sigma': sigma} | |
class OSGDecoderFlexicube(OSGDecoder): | |
# https://github.com/TencentARC/InstantMesh/blob/0a64425c6d390afa40128132cec42cd5c6408bbf/src/models/renderer/synthesizer_mesh.py#L15 | |
def __init__(self, n_features, options, hidden_dim: int = 64, num_layers: int = 4, activation: nn.Module = nn.ReLU): | |
super().__init__(n_features, options) | |
# self.net_sdf = nn.Sequential( | |
# nn.Linear(3 * n_features, hidden_dim), | |
# activation(), | |
# *itertools.chain(*[[ | |
# nn.Linear(hidden_dim, hidden_dim), | |
# activation(), | |
# ] for _ in range(num_layers - 2)]), | |
# nn.Linear(hidden_dim, 1), | |
# ) | |
# self.net_rgb = nn.Sequential( | |
# nn.Linear(3 * n_features, hidden_dim), | |
# activation(), | |
# *itertools.chain(*[[ | |
# nn.Linear(hidden_dim, hidden_dim), | |
# activation(), | |
# ] for _ in range(num_layers - 2)]), | |
# nn.Linear(hidden_dim, 3), | |
# ) | |
# ! sdf and rgb prediction adopts old tradition, softplus here | |
# TODO, load pre-trained model weights | |
self.net_sdf = torch.nn.Sequential( | |
FullyConnectedLayer(n_features, | |
self.hidden_dim, | |
lr_multiplier=options['decoder_lr_mul']), | |
torch.nn.Softplus(), | |
FullyConnectedLayer(self.hidden_dim, | |
1, | |
lr_multiplier=options['decoder_lr_mul'])) | |
self.net_rgb = torch.nn.Sequential( | |
FullyConnectedLayer(n_features, | |
self.hidden_dim, | |
lr_multiplier=options['decoder_lr_mul']), | |
torch.nn.Softplus(), | |
FullyConnectedLayer(self.hidden_dim, | |
options['decoder_output_dim'], | |
lr_multiplier=options['decoder_lr_mul'])) | |
# ! for following MLP, use new behaviour | |
self.net_deformation = nn.Sequential( | |
nn.Linear(3 * n_features, hidden_dim), | |
activation(), | |
*itertools.chain(*[[ | |
nn.Linear(hidden_dim, hidden_dim), | |
activation(), | |
] for _ in range(num_layers - 2)]), | |
nn.Linear(hidden_dim, 3), | |
) | |
self.net_weight = nn.Sequential( | |
nn.Linear(8 * 3 * n_features, hidden_dim), | |
activation(), | |
*itertools.chain(*[[ | |
nn.Linear(hidden_dim, hidden_dim), | |
activation(), | |
] for _ in range(num_layers - 2)]), | |
nn.Linear(hidden_dim, 21), | |
) | |
# init all bias to zero | |
for m in self.modules(): | |
if isinstance(m, nn.Linear): | |
nn.init.zeros_(m.bias) | |
# def forward(self, sampled_features, ray_directions): | |
# # Aggregate features | |
# sampled_features = sampled_features.mean(1) | |
# x = sampled_features | |
# N, M, C = x.shape | |
# x = x.view(N * M, C) | |
# x = self.net(x) | |
# x = x.view(N, M, -1) | |
# rgb = x[..., 1:] | |
# sigma = x[..., 0:1] | |
# if self.activation == "sigmoid": | |
# # Original EG3D | |
# rgb = torch.sigmoid(rgb) * (1 + 2 * 0.001) - 0.001 | |
# elif self.activation == "lrelu": | |
# # StyleGAN2-style, use with toRGB | |
# rgb = torch.nn.functional.leaky_relu(rgb, 0.2, | |
# inplace=True) * math.sqrt(2) | |
# return {'rgb': rgb, 'sigma': sigma} | |
def get_geometry_prediction(self, sampled_features, flexicubes_indices): | |
_N, n_planes, _M, _C = sampled_features.shape | |
sdf = self.net_sdf(sampled_features.mean(1)) # for compat issue | |
sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C) | |
deformation = self.net_deformation(sampled_features) | |
grid_features = torch.index_select(input=sampled_features, index=flexicubes_indices.reshape(-1), dim=1) | |
grid_features = grid_features.reshape( | |
sampled_features.shape[0], flexicubes_indices.shape[0], flexicubes_indices.shape[1] * sampled_features.shape[-1]) | |
weight = self.net_weight(grid_features) * 0.1 | |
return sdf, deformation, weight | |
def get_texture_prediction(self, sampled_features): | |
_N, n_planes, _M, _C = sampled_features.shape | |
# sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C) | |
sampled_features = sampled_features.mean(1) | |
rgb = self.net_rgb(sampled_features) # sigmoid feat by default | |
rgb = torch.sigmoid(rgb)*(1 + 2*0.001) - 0.001 # Uses sigmoid clamping from MipNeRF | |
return rgb | |
class LRMOSGDecoder(nn.Module): | |
""" | |
Triplane decoder that gives RGB and sigma values from sampled features. | |
Using ReLU here instead of Softplus in the original implementation. | |
Reference: | |
EG3D: https://github.com/NVlabs/eg3d/blob/main/eg3d/training/triplane.py#L112 | |
""" | |
def __init__(self, n_features: int, | |
hidden_dim: int = 64, num_layers: int = 4, activation: nn.Module = nn.ReLU): | |
super().__init__() | |
self.decoder_output_dim = 3 | |
self.net = nn.Sequential( | |
nn.Linear(3 * n_features, hidden_dim), | |
activation(), | |
*itertools.chain(*[[ | |
nn.Linear(hidden_dim, hidden_dim), | |
activation(), | |
] for _ in range(num_layers - 2)]), | |
nn.Linear(hidden_dim, 1 + self.decoder_output_dim), | |
) | |
# init all bias to zero | |
for m in self.modules(): | |
if isinstance(m, nn.Linear): | |
nn.init.zeros_(m.bias) | |
def forward(self, sampled_features, ray_directions): | |
# Aggregate features by mean | |
# sampled_features = sampled_features.mean(1) | |
# Aggregate features by concatenation | |
_N, n_planes, _M, _C = sampled_features.shape | |
sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C) | |
x = sampled_features | |
N, M, C = x.shape | |
x = x.contiguous().view(N*M, C) | |
x = self.net(x) | |
x = x.view(N, M, -1) | |
rgb = torch.sigmoid(x[..., 1:])*(1 + 2*0.001) - 0.001 # Uses sigmoid clamping from MipNeRF | |
sigma = x[..., 0:1] | |
return {'rgb': rgb, 'sigma': sigma} | |
class Triplane(torch.nn.Module): | |
def __init__( | |
self, | |
c_dim=25, # Conditioning label (C) dimensionality. | |
img_resolution=128, # Output resolution. | |
img_channels=3, # Number of output color channels. | |
out_chans=96, | |
triplane_size=224, | |
rendering_kwargs={}, | |
decoder_in_chans=32, | |
decoder_output_dim=32, | |
sr_num_fp16_res=0, | |
sr_kwargs={}, | |
create_triplane=False, # for overfitting single instance study | |
bcg_synthesis_kwargs={}, | |
lrm_decoder=False, | |
): | |
super().__init__() | |
self.c_dim = c_dim | |
self.img_resolution = img_resolution # TODO | |
self.img_channels = img_channels | |
self.triplane_size = triplane_size | |
self.decoder_in_chans = decoder_in_chans | |
self.out_chans = out_chans | |
self.renderer = ImportanceRenderer() | |
if 'PatchRaySampler' in rendering_kwargs: | |
self.ray_sampler = PatchRaySampler() | |
else: | |
self.ray_sampler = RaySampler() | |
if lrm_decoder: | |
self.decoder = LRMOSGDecoder( | |
decoder_in_chans,) | |
else: | |
self.decoder = OSGDecoder( | |
decoder_in_chans, | |
{ | |
'decoder_lr_mul': rendering_kwargs.get('decoder_lr_mul', 1), | |
# 'decoder_output_dim': 32 | |
'decoder_output_dim': decoder_output_dim | |
}) | |
self.neural_rendering_resolution = img_resolution # TODO | |
# self.neural_rendering_resolution = 128 # TODO | |
self.rendering_kwargs = rendering_kwargs | |
self.create_triplane = create_triplane | |
if create_triplane: | |
self.planes = nn.Parameter(torch.randn(1, out_chans, 256, 256)) | |
if bool(sr_kwargs): # check whether empty | |
assert decoder_in_chans == decoder_output_dim, 'tradition' | |
if rendering_kwargs['superresolution_module'] in [ | |
'torch_utils.components.PixelUnshuffleUpsample', | |
'torch_utils.components.NearestConvSR', | |
'torch_utils.components.NearestConvSR_Residual' | |
]: | |
self.superresolution = dnnlib.util.construct_class_by_name( | |
class_name=rendering_kwargs['superresolution_module'], | |
# * for PixelUnshuffleUpsample | |
sr_ratio=2, # 2x SR, 128 -> 256 | |
output_dim=decoder_output_dim, | |
num_out_ch=3, | |
) | |
else: | |
self.superresolution = dnnlib.util.construct_class_by_name( | |
class_name=rendering_kwargs['superresolution_module'], | |
# * for stylegan upsample | |
channels=decoder_output_dim, | |
img_resolution=img_resolution, | |
sr_num_fp16_res=sr_num_fp16_res, | |
sr_antialias=rendering_kwargs['sr_antialias'], | |
**sr_kwargs) | |
else: | |
self.superresolution = None | |
self.bcg_synthesis = None | |
# * pure reconstruction | |
def forward( | |
self, | |
planes=None, | |
# img, | |
c=None, | |
ws=None, | |
ray_origins=None, | |
ray_directions=None, | |
z_bcg=None, | |
neural_rendering_resolution=None, | |
update_emas=False, | |
cache_backbone=False, | |
use_cached_backbone=False, | |
return_meta=False, | |
return_raw_only=False, | |
sample_ray_only=False, | |
fg_bbox=None, | |
**synthesis_kwargs): | |
cam2world_matrix = c[:, :16].reshape(-1, 4, 4) | |
# cam2world_matrix = torch.eye(4, device=c.device).unsqueeze(0).repeat_interleave(c.shape[0], dim=0) | |
# c[:, :16] = cam2world_matrix.view(-1, 16) | |
intrinsics = c[:, 16:25].reshape(-1, 3, 3) | |
if neural_rendering_resolution is None: | |
neural_rendering_resolution = self.neural_rendering_resolution | |
else: | |
self.neural_rendering_resolution = neural_rendering_resolution | |
if ray_directions is None: # when output video | |
H = W = self.neural_rendering_resolution | |
# Create a batch of rays for volume rendering | |
# ray_origins, ray_directions, ray_bboxes = self.ray_sampler( | |
# cam2world_matrix, intrinsics, neural_rendering_resolution) | |
if sample_ray_only: # ! for sampling | |
ray_origins, ray_directions, ray_bboxes = self.ray_sampler( | |
cam2world_matrix, intrinsics, | |
self.rendering_kwargs.get( 'patch_rendering_resolution' ), | |
self.neural_rendering_resolution, fg_bbox) | |
# for patch supervision | |
ret_dict = { | |
'ray_origins': ray_origins, | |
'ray_directions': ray_directions, | |
'ray_bboxes': ray_bboxes, | |
} | |
return ret_dict | |
else: # ! for rendering | |
ray_origins, ray_directions, _ = self.ray_sampler( | |
cam2world_matrix, intrinsics, self.neural_rendering_resolution, | |
self.neural_rendering_resolution) | |
else: | |
assert ray_origins is not None | |
H = W = int(ray_directions.shape[1]** | |
0.5) # dynamically set patch resolution | |
# ! match the batch size, if not returned | |
if planes is None: | |
assert self.planes is not None | |
planes = self.planes.repeat_interleave(c.shape[0], dim=0) | |
return_sampling_details_flag = self.rendering_kwargs.get( | |
'return_sampling_details_flag', False) | |
if return_sampling_details_flag: | |
return_meta = True | |
# Create triplanes by running StyleGAN backbone | |
N, M, _ = ray_origins.shape | |
# Reshape output into three 32-channel planes | |
if planes.shape[1] == 3 * 2 * self.decoder_in_chans: | |
# if isinstance(planes, tuple): | |
# N *= 2 | |
triplane_bg = True | |
# planes = torch.cat(planes, 0) # inference in parallel | |
# ray_origins = ray_origins.repeat(2,1,1) | |
# ray_directions = ray_directions.repeat(2,1,1) | |
else: | |
triplane_bg = False | |
# assert not triplane_bg | |
# ! hard coded, will fix later | |
# if planes.shape[1] == 3 * self.decoder_in_chans: | |
# else: | |
# planes = planes.view(len(planes), 3, self.decoder_in_chans, | |
planes = planes.reshape( | |
len(planes), | |
3, | |
-1, # ! support background plane | |
planes.shape[-2], | |
planes.shape[-1]) # BS 96 256 256 | |
# Perform volume rendering | |
rendering_details = self.renderer(planes, | |
self.decoder, | |
ray_origins, | |
ray_directions, | |
self.rendering_kwargs, | |
return_meta=return_meta) | |
feature_samples, depth_samples, weights_samples = ( | |
rendering_details[k] | |
for k in ['feature_samples', 'depth_samples', 'weights_samples']) | |
if return_sampling_details_flag: | |
shape_synthesized = rendering_details['shape_synthesized'] | |
else: | |
shape_synthesized = None | |
# Reshape into 'raw' neural-rendered image | |
feature_image = feature_samples.permute(0, 2, 1).reshape( | |
N, feature_samples.shape[-1], H, | |
W).contiguous() # B 32 H W, in [-1,1] | |
depth_image = depth_samples.permute(0, 2, 1).reshape(N, 1, H, W) | |
weights_samples = weights_samples.permute(0, 2, 1).reshape(N, 1, H, W) | |
# Generate Background | |
# if self.bcg_synthesis: | |
# # bg composition | |
# # if self.decoder.activation == "sigmoid": | |
# # feature_image = feature_image * 2 - 1 # Scale to (-1, 1), taken from ray marcher | |
# assert isinstance( | |
# z_bcg, torch.Tensor | |
# ) # 512 latents after reparmaterization, reuse the name | |
# # ws_bcg = ws[:,:self.bcg_synthesis.num_ws] if ws_bcg is None else ws_bcg[:,:self.bcg_synthesis.num_ws] | |
# with torch.autocast(device_type='cuda', | |
# dtype=torch.float16, | |
# enabled=False): | |
# ws_bcg = self.bcg_mapping(z_bcg, c=None) # reuse the name | |
# if ws_bcg.size(1) < self.bcg_synthesis.num_ws: | |
# ws_bcg = torch.cat([ | |
# ws_bcg, ws_bcg[:, -1:].repeat( | |
# 1, self.bcg_synthesis.num_ws - ws_bcg.size(1), 1) | |
# ], 1) | |
# bcg_image = self.bcg_synthesis(ws_bcg, | |
# update_emas=update_emas, | |
# **synthesis_kwargs) | |
# bcg_image = torch.nn.functional.interpolate( | |
# bcg_image, | |
# size=feature_image.shape[2:], | |
# mode='bilinear', | |
# align_corners=False, | |
# antialias=self.rendering_kwargs['sr_antialias']) | |
# feature_image = feature_image + (1 - weights_samples) * bcg_image | |
# # Generate Raw image | |
# assert self.torgb | |
# rgb_image = self.torgb(feature_image, | |
# ws_bcg[:, -1], | |
# fused_modconv=False) | |
# rgb_image = rgb_image.to(dtype=torch.float32, | |
# memory_format=torch.contiguous_format) | |
# # st() | |
# else: | |
mask_image = weights_samples * (1 + 2 * 0.001) - 0.001 | |
if triplane_bg: | |
# true_bs = N // 2 | |
# weights_samples = weights_samples[:true_bs] | |
# mask_image = mask_image[:true_bs] | |
# feature_image = feature_image[:true_bs] * mask_image + feature_image[true_bs:] * (1-mask_image) # the first is foreground | |
# depth_image = depth_image[:true_bs] | |
# ! composited colors | |
# rgb_final = ( | |
# 1 - fg_ret_dict['weights'] | |
# ) * bg_ret_dict['rgb_final'] + fg_ret_dict[ | |
# 'feature_samples'] # https://github.com/SizheAn/PanoHead/blob/17ad915941c7e2703d5aa3eb5ff12eac47c90e53/training/triplane.py#L127C45-L127C64 | |
# ret_dict.update({ | |
# 'feature_samples': rgb_final, | |
# }) | |
# st() | |
feature_image = (1 - mask_image) * rendering_details[ | |
'bg_ret_dict']['rgb_final'] + feature_image | |
rgb_image = feature_image[:, :3] | |
# # Run superresolution to get final image | |
if self.superresolution is not None and not return_raw_only: | |
# assert ws is not None, 'feed in [cls] token here for SR module' | |
if ws is not None and ws.ndim == 2: | |
ws = ws.unsqueeze( | |
1)[:, -1:, :] # follow stylegan tradition, B, N, C | |
sr_image = self.superresolution( | |
rgb=rgb_image, | |
x=feature_image, | |
base_x=rgb_image, | |
ws=ws, # only use the last layer | |
noise_mode=self. | |
rendering_kwargs['superresolution_noise_mode'], # none | |
**{ | |
k: synthesis_kwargs[k] | |
for k in synthesis_kwargs.keys() if k != 'noise_mode' | |
}) | |
else: | |
# sr_image = rgb_image | |
sr_image = None | |
if shape_synthesized is not None: | |
shape_synthesized.update({ | |
'image_depth': depth_image, | |
}) # for 3D loss easy computation, wrap all 3D in a single dict | |
ret_dict = { | |
'feature_image': feature_image, | |
# 'image_raw': feature_image[:, :3], | |
'image_raw': rgb_image, | |
'image_depth': depth_image, | |
'weights_samples': weights_samples, | |
# 'silhouette': mask_image, | |
# 'silhouette_normalized_3channel': (mask_image*2-1).repeat_interleave(3,1), # N 3 H W | |
'shape_synthesized': shape_synthesized, | |
"image_mask": mask_image, | |
} | |
if sr_image is not None: | |
ret_dict.update({ | |
'image_sr': sr_image, | |
}) | |
if return_meta: | |
ret_dict.update({ | |
'feature_volume': | |
rendering_details['feature_volume'], | |
'all_coords': | |
rendering_details['all_coords'], | |
'weights': | |
rendering_details['weights'], | |
}) | |
return ret_dict | |
class Triplane_fg_bg_plane(Triplane): | |
# a separate background plane | |
def __init__(self, | |
c_dim=25, | |
img_resolution=128, | |
img_channels=3, | |
out_chans=96, | |
triplane_size=224, | |
rendering_kwargs={}, | |
decoder_in_chans=32, | |
decoder_output_dim=32, | |
sr_num_fp16_res=0, | |
sr_kwargs={}, | |
bcg_synthesis_kwargs={}): | |
super().__init__(c_dim, img_resolution, img_channels, out_chans, | |
triplane_size, rendering_kwargs, decoder_in_chans, | |
decoder_output_dim, sr_num_fp16_res, sr_kwargs, | |
bcg_synthesis_kwargs) | |
self.bcg_decoder = Decoder( | |
ch=64, # half channel size | |
out_ch=32, | |
# ch_mult=(1, 2, 4), | |
ch_mult=(1, 2), # use res=64 for now | |
num_res_blocks=2, | |
dropout=0.0, | |
attn_resolutions=(), | |
z_channels=4, | |
resolution=64, | |
in_channels=3, | |
) | |
# * pure reconstruction | |
def forward( | |
self, | |
planes, | |
bg_plane, | |
# img, | |
c, | |
ws=None, | |
z_bcg=None, | |
neural_rendering_resolution=None, | |
update_emas=False, | |
cache_backbone=False, | |
use_cached_backbone=False, | |
return_meta=False, | |
return_raw_only=False, | |
**synthesis_kwargs): | |
# ! match the batch size | |
if planes is None: | |
assert self.planes is not None | |
planes = self.planes.repeat_interleave(c.shape[0], dim=0) | |
return_sampling_details_flag = self.rendering_kwargs.get( | |
'return_sampling_details_flag', False) | |
if return_sampling_details_flag: | |
return_meta = True | |
cam2world_matrix = c[:, :16].reshape(-1, 4, 4) | |
# cam2world_matrix = torch.eye(4, device=c.device).unsqueeze(0).repeat_interleave(c.shape[0], dim=0) | |
# c[:, :16] = cam2world_matrix.view(-1, 16) | |
intrinsics = c[:, 16:25].reshape(-1, 3, 3) | |
if neural_rendering_resolution is None: | |
neural_rendering_resolution = self.neural_rendering_resolution | |
else: | |
self.neural_rendering_resolution = neural_rendering_resolution | |
H = W = self.neural_rendering_resolution | |
# Create a batch of rays for volume rendering | |
ray_origins, ray_directions, _ = self.ray_sampler( | |
cam2world_matrix, intrinsics, neural_rendering_resolution) | |
# Create triplanes by running StyleGAN backbone | |
N, M, _ = ray_origins.shape | |
# # Reshape output into three 32-channel planes | |
# if planes.shape[1] == 3 * 2 * self.decoder_in_chans: | |
# # if isinstance(planes, tuple): | |
# # N *= 2 | |
# triplane_bg = True | |
# # planes = torch.cat(planes, 0) # inference in parallel | |
# # ray_origins = ray_origins.repeat(2,1,1) | |
# # ray_directions = ray_directions.repeat(2,1,1) | |
# else: | |
# triplane_bg = False | |
# assert not triplane_bg | |
planes = planes.view( | |
len(planes), | |
3, | |
-1, # ! support background plane | |
planes.shape[-2], | |
planes.shape[-1]) # BS 96 256 256 | |
# Perform volume rendering | |
rendering_details = self.renderer(planes, | |
self.decoder, | |
ray_origins, | |
ray_directions, | |
self.rendering_kwargs, | |
return_meta=return_meta) | |
feature_samples, depth_samples, weights_samples = ( | |
rendering_details[k] | |
for k in ['feature_samples', 'depth_samples', 'weights_samples']) | |
if return_sampling_details_flag: | |
shape_synthesized = rendering_details['shape_synthesized'] | |
else: | |
shape_synthesized = None | |
# Reshape into 'raw' neural-rendered image | |
feature_image = feature_samples.permute(0, 2, 1).reshape( | |
N, feature_samples.shape[-1], H, | |
W).contiguous() # B 32 H W, in [-1,1] | |
depth_image = depth_samples.permute(0, 2, 1).reshape(N, 1, H, W) | |
weights_samples = weights_samples.permute(0, 2, 1).reshape(N, 1, H, W) | |
bcg_image = self.bcg_decoder(bg_plane) | |
bcg_image = torch.nn.functional.interpolate( | |
bcg_image, | |
size=feature_image.shape[2:], | |
mode='bilinear', | |
align_corners=False, | |
antialias=self.rendering_kwargs['sr_antialias']) | |
mask_image = weights_samples * (1 + 2 * 0.001) - 0.001 | |
# ! fuse fg/bg model output | |
feature_image = feature_image + (1 - weights_samples) * bcg_image | |
rgb_image = feature_image[:, :3] | |
# # Run superresolution to get final image | |
if self.superresolution is not None and not return_raw_only: | |
# assert ws is not None, 'feed in [cls] token here for SR module' | |
if ws is not None and ws.ndim == 2: | |
ws = ws.unsqueeze( | |
1)[:, -1:, :] # follow stylegan tradition, B, N, C | |
sr_image = self.superresolution( | |
rgb=rgb_image, | |
x=feature_image, | |
base_x=rgb_image, | |
ws=ws, # only use the last layer | |
noise_mode=self. | |
rendering_kwargs['superresolution_noise_mode'], # none | |
**{ | |
k: synthesis_kwargs[k] | |
for k in synthesis_kwargs.keys() if k != 'noise_mode' | |
}) | |
else: | |
# sr_image = rgb_image | |
sr_image = None | |
if shape_synthesized is not None: | |
shape_synthesized.update({ | |
'image_depth': depth_image, | |
}) # for 3D loss easy computation, wrap all 3D in a single dict | |
ret_dict = { | |
'feature_image': feature_image, | |
# 'image_raw': feature_image[:, :3], | |
'image_raw': rgb_image, | |
'image_depth': depth_image, | |
'weights_samples': weights_samples, | |
# 'silhouette': mask_image, | |
# 'silhouette_normalized_3channel': (mask_image*2-1).repeat_interleave(3,1), # N 3 H W | |
'shape_synthesized': shape_synthesized, | |
"image_mask": mask_image, | |
} | |
if sr_image is not None: | |
ret_dict.update({ | |
'image_sr': sr_image, | |
}) | |
if return_meta: | |
ret_dict.update({ | |
'feature_volume': | |
rendering_details['feature_volume'], | |
'all_coords': | |
rendering_details['all_coords'], | |
'weights': | |
rendering_details['weights'], | |
}) | |
return ret_dict | |
class TriplaneFlexiCube(Triplane): | |
def __init__(self, c_dim=25, img_resolution=128, img_channels=3, out_chans=96, triplane_size=224, rendering_kwargs={}, decoder_in_chans=32, decoder_output_dim=32, sr_num_fp16_res=0, sr_kwargs={}, | |
create_triplane=False, # for overfitting single instance study | |
bcg_synthesis_kwargs={}, | |
lrm_decoder=False, | |
): | |
super().__init__(c_dim, img_resolution, img_channels, out_chans, triplane_size, rendering_kwargs, decoder_in_chans, decoder_output_dim, sr_num_fp16_res, sr_kwargs, bcg_synthesis_kwargs, lrm_decoder=lrm_decoder, create_triplane=create_triplane) | |
# https://github.com/TencentARC/InstantMesh/blob/0a64425c6d390afa40128132cec42cd5c6408bbf/src/models/renderer/synthesizer_mesh.py#L93 | |
def get_geometry_prediction(self, planes, sample_coordinates, flexicubes_indices): | |
plane_axes = self.plane_axes.to(planes.device) | |
sampled_features = sample_from_planes( | |
plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=self.rendering_kwargs['box_warp']) | |
sdf, deformation, weight = self.decoder.get_geometry_prediction(sampled_features, flexicubes_indices) | |
return sdf, deformation, weight | |
def get_texture_prediction(self, planes, sample_coordinates): | |
plane_axes = self.plane_axes.to(planes.device) | |
sampled_features = sample_from_planes( | |
plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=self.rendering_kwargs['box_warp']) | |
rgb = self.decoder.get_texture_prediction(sampled_features) | |
return rgb |