Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Train a diffusion model on images. | |
""" | |
# import imageio | |
from pathlib import Path | |
import torchvision | |
import kornia | |
import lz4.frame | |
import gzip | |
import random | |
import json | |
import sys | |
import os | |
import lmdb | |
from tqdm import tqdm | |
sys.path.append('.') | |
import torch.distributed as dist | |
import pytorch3d.ops | |
import pickle | |
import traceback | |
from PIL import Image | |
import torch as th | |
if th.cuda.is_available(): | |
from xformers.triton import FusedLayerNorm as LayerNorm | |
import torch.multiprocessing as mp | |
import lzma | |
import webdataset as wds | |
import numpy as np | |
import point_cloud_utils as pcu | |
from torch.utils.data import DataLoader, Dataset | |
import imageio.v3 as iio | |
import argparse | |
import dnnlib | |
from guided_diffusion import dist_util, logger | |
from guided_diffusion.script_util import ( | |
args_to_dict, | |
add_dict_to_argparser, | |
) | |
# from nsr.train_util import TrainLoop3DRec as TrainLoop | |
from nsr.train_nv_util import TrainLoop3DRecNV, TrainLoop3DRec, TrainLoop3DRecNVPatch | |
from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, rendering_options_defaults, eg3d_options_default | |
from datasets.shapenet import load_data, load_data_for_lmdb, load_eval_data, load_memory_data | |
from nsr.losses.builder import E3DGELossClass | |
from datasets.eg3d_dataset import init_dataset_kwargs | |
from nsr.volumetric_rendering.ray_sampler import RaySampler | |
# from .lmdb_create import encode_and_compress_image | |
def encode_and_compress_image(inp_array, is_image=False, compress=True): | |
# Read the image using imageio | |
# image = imageio.v3.imread(image_path) | |
# Convert the image to bytes | |
# with io.BytesIO() as byte_buffer: | |
# imageio.imsave(byte_buffer, image, format="png") | |
# image_bytes = byte_buffer.getvalue() | |
if is_image: | |
inp_bytes = iio.imwrite("<bytes>", inp_array, extension=".png") | |
else: | |
inp_bytes = inp_array.tobytes() | |
# Compress the image data using gzip | |
if compress: | |
# compressed_data = gzip.compress(inp_bytes) | |
compressed_data = lz4.frame.compress(inp_bytes) | |
return compressed_data | |
else: | |
return inp_bytes | |
from pdb import set_trace as st | |
import bz2 | |
# th.backends.cuda.matmul.allow_tf32 = True # https://huggingface.co/docs/diffusers/optimization/fp16 | |
def training_loop(args): | |
# def training_loop(args): | |
# dist_util.setup_dist(args) | |
# th.autograd.set_detect_anomaly(True) # type: ignore | |
th.autograd.set_detect_anomaly(False) # type: ignore | |
# https://blog.csdn.net/qq_41682740/article/details/126304613 | |
SEED = args.seed | |
# dist.init_process_group(backend='nccl', init_method='env://', rank=args.local_rank, world_size=th.cuda.device_count()) | |
# logger.log(f"{args.local_rank=} init complete, seed={SEED}") | |
# th.cuda.set_device(args.local_rank) | |
th.cuda.empty_cache() | |
# * deterministic algorithms flags | |
th.cuda.manual_seed_all(SEED) | |
np.random.seed(SEED) | |
random.seed(SEED) | |
ray_sampler = RaySampler() | |
# logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"]) | |
logger.configure(dir=args.logdir) | |
logger.log("creating encoder and NSR decoder...") | |
# device = dist_util.dev() | |
# device = th.device("cuda", args.local_rank) | |
# shared eg3d opts | |
opts = eg3d_options_default() | |
if args.sr_training: | |
args.sr_kwargs = dnnlib.EasyDict( | |
channel_base=opts.cbase, | |
channel_max=opts.cmax, | |
fused_modconv_default='inference_only', | |
use_noise=True | |
) # ! close noise injection? since noise_mode='none' in eg3d | |
if args.objv_dataset: | |
from datasets.g_buffer_objaverse import load_data, load_eval_data, load_memory_data, load_data_for_lmdb | |
else: # shapenet | |
from datasets.shapenet import load_data, load_eval_data, load_memory_data, load_data_for_lmdb | |
# auto_encoder = create_3DAE_model( | |
# **args_to_dict(args, | |
# encoder_and_nsr_defaults().keys())) | |
# auto_encoder.to(device) | |
# auto_encoder.train() | |
logger.log("creating data loader...") | |
# data = load_data( | |
# st() | |
# if args.overfitting: | |
# data = load_memory_data( | |
# file_path=args.data_dir, | |
# batch_size=args.batch_size, | |
# reso=args.image_size, | |
# reso_encoder=args.image_size_encoder, # 224 -> 128 | |
# num_workers=args.num_workers, | |
# # load_depth=args.depth_lambda > 0 | |
# load_depth=True # for evaluation | |
# ) | |
# else: | |
if args.cfg in ('afhq', 'ffhq'): | |
# ! load data | |
logger.log("creating eg3d data loader...") | |
training_set_kwargs, dataset_name = init_dataset_kwargs( | |
data=args.data_dir, | |
class_name='datasets.eg3d_dataset.ImageFolderDatasetLMDB', | |
reso_gt=args.image_size) # only load pose here | |
# if args.cond and not training_set_kwargs.use_labels: | |
# raise Exception('check here') | |
# training_set_kwargs.use_labels = args.cond | |
training_set_kwargs.use_labels = True | |
training_set_kwargs.xflip = False | |
training_set_kwargs.random_seed = SEED | |
# training_set_kwargs.max_size = args.dataset_size | |
# desc = f'{args.cfg:s}-{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}-gamma{c.loss_kwargs.r1_gamma:g}' | |
# * construct ffhq/afhq dataset | |
training_set = dnnlib.util.construct_class_by_name( | |
**training_set_kwargs) # subclass of training.dataset.Dataset | |
dataset_size = len(training_set) | |
# training_set_sampler = InfiniteSampler( | |
# dataset=training_set, | |
# rank=dist_util.get_rank(), | |
# num_replicas=dist_util.get_world_size(), | |
# seed=SEED) | |
data = DataLoader( | |
training_set, | |
shuffle=False, | |
batch_size=1, | |
num_workers=16, | |
drop_last=False, | |
# prefetch_factor=2, | |
pin_memory=True, | |
persistent_workers=True, | |
) | |
else: | |
# data, dataset_name, dataset_size, dataset = load_data_for_lmdb( | |
data, dataset_name, dataset_size = load_data_for_lmdb( | |
file_path=args.data_dir, | |
batch_size=args.batch_size, | |
reso=args.image_size, | |
reso_encoder=args.image_size_encoder, # 224 -> 128 | |
num_workers=args.num_workers, | |
load_depth=True, | |
preprocess=None, | |
dataset_size=args.dataset_size, | |
trainer_name=args.trainer_name, | |
shuffle_across_cls=args.shuffle_across_cls, | |
wds_split=args.wds_split, | |
four_view_for_latent=True | |
# wds_output_path=os.path.join(logger.get_dir(), f'wds-%06d.tar') | |
# load_depth=True # for evaluation | |
) | |
# if args.pose_warm_up_iter > 0: | |
# overfitting_dataset = load_memory_data( | |
# file_path=args.data_dir, | |
# batch_size=args.batch_size, | |
# reso=args.image_size, | |
# reso_encoder=args.image_size_encoder, # 224 -> 128 | |
# num_workers=args.num_workers, | |
# # load_depth=args.depth_lambda > 0 | |
# load_depth=True # for evaluation | |
# ) | |
# data = [data, overfitting_dataset, args.pose_warm_up_iter] | |
# eval_data = load_eval_data( | |
# file_path=args.eval_data_dir, | |
# batch_size=args.eval_batch_size, | |
# reso=args.image_size, | |
# reso_encoder=args.image_size_encoder, # 224 -> 128 | |
# num_workers=args.num_workers, | |
# load_depth=True, # for evaluation | |
# preprocess=auto_encoder.preprocess) | |
args.img_size = [args.image_size_encoder] | |
# try dry run | |
# batch = next(data) | |
# batch = None | |
# logger.log("creating model and diffusion...") | |
# let all processes sync up before starting with a new epoch of training | |
dist_util.synchronize() | |
# schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion) | |
opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys())) | |
# opt.max_depth, opt.min_depth = args.rendering_kwargs.ray_end, args.rendering_kwargs.ray_start | |
# loss_class = E3DGELossClass(device, opt).to(device) | |
# writer = SummaryWriter() # TODO, add log dir | |
logger.log("training...") | |
# TrainLoop = { | |
# 'input_rec': TrainLoop3DRec, | |
# 'nv_rec': TrainLoop3DRecNV, | |
# 'nv_rec_patch': TrainLoop3DRecNVPatch, | |
# }[args.trainer_name] | |
# TrainLoop(rec_model=auto_encoder, | |
# loss_class=loss_class, | |
# data=data, | |
# eval_data=eval_data, | |
# **vars(args)).run_loop() # ! overfitting | |
# Function to compress an image using gzip | |
# def compress_image_gzip(image_path): | |
# def encode_and_compress_image(inp_array, is_image=False): | |
# # Read the image using imageio | |
# # image = imageio.v3.imread(image_path) | |
# # Convert the image to bytes | |
# # with io.BytesIO() as byte_buffer: | |
# # imageio.imsave(byte_buffer, image, format="png") | |
# # image_bytes = byte_buffer.getvalue() | |
# if is_image: | |
# inp_bytes = iio.imwrite("<bytes>", inp_array, extension=".png") | |
# else: | |
# inp_bytes = inp_array.tobytes() | |
# # Compress the image data using gzip | |
# compressed_data = gzip.compress(inp_bytes) | |
# return compressed_data | |
def save_pcd_from_depth(dataset_loader, dataset_size, lmdb_path, | |
start_shard, wds_split): | |
""" | |
Convert a PyTorch dataset to LMDB format. | |
Parameters: | |
- dataset: PyTorch dataset | |
- lmdb_path: Path to store the LMDB database | |
""" | |
# env = lmdb.open(lmdb_path, map_size=1024 ** 4, readahead=False) # Adjust map_size based on your dataset size | |
# sink = wds.ShardWriter(lmdb_path, start_shard=start_shard) | |
# with env.begin(write=True) as txn: | |
# with env.begin(write=True) as txn: | |
# txn.put("length".encode("utf-8"), str(dataset_size).encode("utf-8")) | |
# K = 10000 # fps K | |
K = 4096 # fps K | |
# K = 128*128*2 # fps K, 32768 | |
# K = 1024*24 # 20480 | |
# K = 4096 # fps K | |
# if True: | |
# try: | |
for idx, sample in enumerate(tqdm(dataset_loader)): | |
# pass | |
# remove the batch index of returned dict sample | |
sample_ins = sample.pop('ins') | |
# !!! add all() | |
assert all([ sample_ins[i] == sample_ins[0] for i in range(0, len(sample_ins)) ]), sample_ins # check the batch is the same instnace | |
img_size = sample['raw_img'].shape[2] | |
pcd_path = Path(f'{logger.get_dir()}/fps-pcd/{sample_ins[0]}') | |
if (pcd_path / f'fps-{K}.ply').exists(): | |
continue | |
pcd_path.mkdir(parents=True, exist_ok=True) | |
# sample = { | |
# # k:v.squeeze(0).cpu().numpy() if isinstance(v, th.Tensor) else v[0] for k, v in sample.items() | |
# k:v.cpu().numpy() if isinstance(v, th.Tensor) else v for k, v in sample.items() | |
# # k:v.cpu().numpy() if isinstance(v, torch.Tensor) else v for k, v in sample.items() | |
# } | |
B = sample['c'].shape[0] | |
cam2world_matrix = sample['c'][:, :16].reshape(B, 4, 4) | |
intrinsics = sample['c'][:, 16:25].reshape(B, 3, 3) | |
ray_origins, ray_directions = ray_sampler( # shape: | |
cam2world_matrix, intrinsics, img_size)[:2] | |
micro = sample | |
# self.gs.output_size,)[:2] | |
# depth = rearrange(micro['depth'], '(B V) H W -> ') | |
# depth_128 = th.nn.functional.interpolate( | |
# micro['depth'].unsqueeze(1), (128, 128), | |
# mode='nearest' | |
# )[:, 0] # since each view has 128x128 Gaussians | |
# depth = depth_128.reshape(B * V, -1).unsqueeze(-1) | |
# fg_mask = (micro['depth'] > 0).unsqueeze(1).float() | |
# fg_mask = micro['alpha_mask'].unsqueeze(1).float() # anti-alias? B 1 H W | |
fg_mask = (micro['alpha_mask'] == 1).unsqueeze(1).float() # anti-alias? B 1 H W | |
kernel = th.tensor([[0, 1, 0], [1, 1, 1], [0, 1, | |
0]]).to(fg_mask.device) | |
# ! erode. but still some noise... | |
''' | |
erode_mask = kornia.morphology.erosion(fg_mask, kernel) # B 1 H W | |
# torchvision.utils.save_image(fg_mask.float()*2-1,'mask.jpg', value_range=(-1,1), normalize=True) | |
# torchvision.utils.save_image(erode_mask.float()*2-1,'erode_mask.jpg', value_range=(-1,1), normalize=True) | |
fg_mask = (erode_mask==1).float().reshape(B, -1).unsqueeze(-1) > 0 # | |
# ''' | |
# fg_mask = fg_mask.reshape(B, -1).unsqueeze(-1) == 1 # ! for some failed data | |
# ! no erode: | |
fg_mask = fg_mask.reshape(B, -1).unsqueeze(-1) > 0 # ! for some failed data | |
depth = micro['depth'].reshape(B, -1).unsqueeze(-1) | |
depth = th.where(depth < 1.05, 0, depth) # filter outlier | |
depth[depth == 0] = 1e10 # so that rays_o will not appear in the final pcd. | |
# fg_mask = depth>0 | |
# fg_mask = th.nn.functional.interpolate( | |
# micro['depth_mask'].unsqueeze(1).to(th.uint8), | |
# (128, 128), | |
# mode='nearest').squeeze(1) # B*V H W | |
# fg_mask = fg_mask.reshape(B * V, -1).unsqueeze(-1) | |
# gt_pos = gt_pos[gt_pos.nonzero(as_tuple=True)].reshape(-1, 3) # return non-zero points for fps sampling | |
# pcu.save_mesh_v(f'tmp/gt-512.ply', gt_pos.detach().cpu().numpy(),) | |
# fps sampling | |
try: | |
gt_pos = ray_origins + depth * ray_directions # BV HW 3, already in the world space | |
gt_pos = fg_mask * gt_pos # remove ray_origins when depth=0 | |
# gt_pos = gt_pos[[8,16,24,25,26, 27, 31, 35]] | |
# gt_pos = gt_pos[[5,10,15,20,24,25,26]] | |
# gt_pos = gt_pos[[4, 12, 20, 25]] | |
gt_pos = gt_pos[:] | |
# gt_pos = gt_pos[[25,26]] | |
gt_pos = gt_pos.reshape(-1, 3).to(dist_util.dev()) | |
gt_pos = gt_pos.clip(-0.45, 0.45) | |
gt_pos = th.where(gt_pos.abs()==0.45, 0, gt_pos) # no boundary here? Yes. | |
# ! filter the zero points together here | |
nonzero_mask = (gt_pos != 0).all(dim=-1) # Shape: (N, 3) | |
nonzero_gt_pos = gt_pos[nonzero_mask] | |
fps_points = pytorch3d.ops.sample_farthest_points( | |
nonzero_gt_pos.unsqueeze(0), K=K)[0] | |
pcu.save_mesh_v( | |
str(pcd_path / f'fps-{K}.ply'), | |
fps_points[0].detach().cpu().numpy(), | |
) | |
assert (pcd_path / f'fps-{K}.ply').exists() | |
except Exception as e: | |
st() | |
pass | |
print(pcd_path, 'save failed: ', e) | |
# ! debug projection matrix | |
# def pcd_to_homo(pcd): | |
# return th.cat([pcd, th.ones_like(pcd[..., 0:1])], -1) | |
# st() | |
# proj_point = th.inverse(cam2world_matrix[0]).to(fps_points) @ pcd_to_homo(fps_points[0]).permute(1, 0) | |
# # proj_point = th.inverse(cam2world_matrix[0]).to(fps_points) @ pcd_to_homo((ray_origins + depth * ray_directions)[0].to(fps_points)).permute(1, 0) | |
# proj_point[:2, ...] /= proj_point[2, ...] | |
# proj_point[2, ...] = 1 # homo | |
# proj_point = intrinsics[0].to(fps_points) @ proj_point[:3] | |
# proj_point = proj_point.permute(1,0)[..., :2] # 768 4 | |
# st() | |
# torchvision.utils.save_image(micro['raw_img'][::5].permute(0,3,1,2).float()/127.5-1,'raw.jpg', value_range=(-1,1), normalize=True) | |
# # encode batch images/depths/strings? no need to encode ins/fname here; just save the caption | |
# # sample = dataset_loader[idx] | |
# compressed_sample = {} | |
# sample['ins'] = sample_ins[0] | |
# sample['caption'] = sample.pop('caption')[0] | |
# for k, v in sample.items(): | |
# # key = f'{idx}-{k}'.encode('utf-8') | |
# if 'img' in k: # only bytes required? laod the 512 depth bytes only. | |
# v = encode_and_compress_image(v, is_image=True, compress=True) | |
# # v = encode_and_compress_image(v, is_image=True, compress=False) | |
# # elif 'depth' in k: | |
# elif isinstance(v, str): | |
# v = v.encode('utf-8') # caption / instance name | |
# else: # regular bytes encoding | |
# v = encode_and_compress_image(v.astype(np.float32), is_image=False, compress=True) | |
# # v = encode_and_compress_image(v.astype(np.float32), is_image=False, compress=False) | |
# compressed_sample[k] = v | |
# # st() # TODO, add .gz for compression after pipeline done | |
# sink.write({ | |
# "__key__": f"sample_{wds_split:03d}_{idx:07d}", | |
# # **{f'{k}.pyd': v for k, v in compressed_sample.items()}, # store as pickle, already compressed | |
# 'sample.pyd': compressed_sample | |
# # 'sample.gz': compressed_sample | |
# }) | |
# break | |
# if idx > 25: | |
# break | |
# except: | |
# continue | |
# sink.close() | |
# convert_to_lmdb(data, os.path.join(logger.get_dir(), dataset_name)) convert_to_lmdb_compressed(data, os.ath.join(logger.get_dir(), dataset_name)) | |
# convert_to_lmdb_compressed(data, os.path.join(logger.get_dir()), dataset_size) | |
save_pcd_from_depth(data, dataset_size, | |
os.path.join(logger.get_dir(), f'wds-%06d.tar'), | |
args.start_shard, args.wds_split) | |
def create_argparser(**kwargs): | |
# defaults.update(model_and_diffusion_defaults()) | |
defaults = dict( | |
seed=0, | |
dataset_size=-1, | |
trainer_name='input_rec', | |
use_amp=False, | |
overfitting=False, | |
num_workers=4, | |
image_size=128, | |
image_size_encoder=224, | |
iterations=150000, | |
anneal_lr=False, | |
lr=5e-5, | |
weight_decay=0.0, | |
lr_anneal_steps=0, | |
batch_size=1, | |
eval_batch_size=12, | |
microbatch=-1, # -1 disables microbatches | |
ema_rate="0.9999", # comma-separated list of EMA values | |
log_interval=50, | |
eval_interval=2500, | |
save_interval=10000, | |
resume_checkpoint="", | |
use_fp16=False, | |
fp16_scale_growth=1e-3, | |
data_dir="", | |
eval_data_dir="", | |
# load_depth=False, # TODO | |
logdir="/mnt/lustre/yslan/logs/nips23/", | |
# test warm up pose sampling training | |
objv_dataset=False, | |
pose_warm_up_iter=-1, | |
start_shard=0, | |
shuffle_across_cls=False, | |
wds_split=1, # out of 4 | |
) | |
defaults.update(encoder_and_nsr_defaults()) # type: ignore | |
defaults.update(loss_defaults()) | |
parser = argparse.ArgumentParser() | |
add_dict_to_argparser(parser, defaults) | |
return parser | |
if __name__ == "__main__": | |
# os.environ[ | |
# "TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging. | |
# os.environ["TORCH_CPP_LOG_LEVEL"]="INFO" | |
# os.environ["NCCL_DEBUG"]="INFO" | |
args = create_argparser().parse_args() | |
# args.local_rank = int(os.environ["LOCAL_RANK"]) | |
args.gpus = th.cuda.device_count() | |
opts = args | |
args.rendering_kwargs = rendering_options_defaults(opts) | |
# print(args) | |
with open(os.path.join(args.logdir, 'args.json'), 'w') as f: | |
json.dump(vars(args), f, indent=2) | |
# Launch processes. | |
print('Launching processes...') | |
# try: | |
training_loop(args) | |
# except KeyboardInterrupt as e: | |
# except Exception as e: | |
# # print(e) | |
# traceback.print_exc() | |
# dist_util.cleanup() # clean port and socket when ctrl+c | |