Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Train a diffusion model on images. | |
""" | |
import sys | |
import os | |
sys.path.append('.') | |
import torch.distributed as dist | |
import torch as th | |
import torch.multiprocessing as mp | |
import argparse | |
import dnnlib | |
from guided_diffusion import dist_util, logger | |
from guided_diffusion.script_util import ( | |
args_to_dict, | |
add_dict_to_argparser, | |
) | |
from nsr.train_util import TrainLoop3DRec as TrainLoop | |
from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults | |
from datasets.shapenet import load_data, load_eval_data, load_memory_data | |
from nsr.losses.builder import E3DGELossClass | |
from pdb import set_trace as st | |
th.backends.cuda.matmul.allow_tf32 = True | |
th.backends.cudnn.allow_tf32 = True | |
th.backends.cudnn.enabled = True | |
SEED = 0 | |
def training_loop(args): | |
# def training_loop(args): | |
dist_util.setup_dist(args) | |
# dist.init_process_group(backend='nccl', init_method='env://', rank=args.local_rank, world_size=th.cuda.device_count()) | |
print(f"{args.local_rank=} init complete") | |
th.cuda.set_device(args.local_rank) | |
th.cuda.manual_seed_all(SEED) | |
# logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"]) | |
logger.configure(dir=args.logdir) | |
logger.log("creating data loader...") | |
# TODO, load shapenet data | |
# data = load_data( | |
# if args.overfitting: | |
# data = load_memory_data( | |
# file_path=args.data_dir, | |
# batch_size=args.batch_size, | |
# reso=args.image_size, | |
# reso_encoder=args.image_size_encoder, # 224 -> 128 | |
# num_workers=args.num_workers, | |
# load_depth=args.depth_lambda > 0 | |
# # load_depth=True # for evaluation | |
# ) | |
# else: | |
# data = load_data( | |
# file_path=args.data_dir, | |
# batch_size=args.batch_size, | |
# reso=args.image_size, | |
# reso_encoder=args.image_size_encoder, # 224 -> 128 | |
# num_workers=args.num_workers, | |
# load_depth=args.depth_lambda > 0 | |
# # load_depth=True # for evaluation | |
# ) | |
eval_data = load_eval_data( | |
file_path=args.data_dir, | |
batch_size=args.eval_batch_size, | |
reso=args.image_size, | |
reso_encoder=args.image_size_encoder, # 224 -> 128 | |
num_workers=args.num_workers, | |
load_depth=True # for evaluation | |
) | |
# try dry run | |
# batch = next(data) | |
# batch = None | |
# logger.log("creating model and diffusion...") | |
logger.log("creating encoder and NSR decoder...") | |
# device = dist_util.dev() | |
device = th.device("cuda", args.local_rank) | |
auto_encoder = create_3DAE_model( | |
**args_to_dict(args, | |
encoder_and_nsr_defaults().keys())) | |
auto_encoder.to(device) | |
auto_encoder.eval() | |
# dist_util.sync_params(auto_encoder.named_parameters()) | |
# auto_encoder.train() | |
# let all processes sync up before starting with a new epoch of training | |
dist_util.synchronize() | |
# noise = th.randn(1, 14 * 14, 384).to(device) # B, L, C | |
# noise = th.randn(1, 3,224,224).to(device) | |
# img = auto_encoder(noise, th.zeros(1, 25).to(device)) | |
# print(img['image'].shape) | |
# if dist_util.get_rank()==0: | |
# print(auto_encoder) | |
# schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion) | |
opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys())) | |
loss_class = E3DGELossClass(device, opt).to(device) | |
# logger.log("training...") | |
TrainLoop( | |
rec_model=auto_encoder, | |
loss_class=loss_class, | |
# diffusion=diffusion, | |
data=None, | |
eval_interval=-1, | |
eval_data=eval_data, | |
# data=batch, | |
batch_size=args.batch_size, | |
microbatch=args.microbatch, | |
lr=args.lr, | |
ema_rate=args.ema_rate, | |
log_interval=args.log_interval, | |
save_interval=args.save_interval, | |
resume_checkpoint=args.resume_checkpoint, | |
resume_cldm_checkpoint=args.resume_cldm_checkpoint, | |
use_fp16=args.use_fp16, | |
fp16_scale_growth=args.fp16_scale_growth, | |
weight_decay=args.weight_decay, | |
lr_anneal_steps=args.lr_anneal_steps, | |
).eval_loop() # ! overfitting | |
def create_argparser(**kwargs): | |
# defaults.update(model_and_diffusion_defaults()) | |
defaults = dict( | |
overfitting=False, | |
num_workers=4, | |
image_size=128, | |
image_size_encoder=224, | |
iterations=150000, | |
anneal_lr=False, | |
lr=5e-5, | |
weight_decay=0.0, | |
lr_anneal_steps=0, | |
batch_size=1, | |
eval_batch_size=8, | |
microbatch=-1, # -1 disables microbatches | |
ema_rate="0.9999", # comma-separated list of EMA values | |
log_interval=10, | |
save_interval=10000, | |
resume_checkpoint="", | |
use_fp16=False, | |
fp16_scale_growth=1e-3, | |
data_dir="", | |
# load_depth=False, # TODO | |
logdir="/mnt/lustre/yslan/logs/nips23/", | |
) | |
defaults.update(encoder_and_nsr_defaults()) # type: ignore | |
defaults.update(loss_defaults()) | |
parser = argparse.ArgumentParser() | |
add_dict_to_argparser(parser, defaults) | |
return parser | |
if __name__ == "__main__": | |
os.environ[ | |
"TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging. | |
os.environ["TORCH_CPP_LOG_LEVEL"]="INFO" | |
master_addr = '127.0.0.1' | |
master_port = dist_util._find_free_port() | |
args = create_argparser().parse_args() | |
args.local_rank = int(os.environ["LOCAL_RANK"]) | |
args.gpus = th.cuda.device_count() | |
args.master_addr = master_addr | |
args.master_port = master_port | |
# Launch processes. | |
print('Launching processes...') | |
training_loop(args) | |