Spaces:
Running
on
Zero
Running
on
Zero
""" | |
https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/models/diffusion/ddpm.py#L30 | |
""" | |
import copy | |
import functools | |
import json | |
import os | |
from pathlib import Path | |
from pdb import set_trace as st | |
from typing import Any | |
from click import prompt | |
import einops | |
import blobfile as bf | |
import imageio | |
import numpy as np | |
import torch as th | |
import torch.distributed as dist | |
import torchvision | |
from PIL import Image | |
from torch.nn.parallel.distributed import DistributedDataParallel as DDP | |
from torch.optim import AdamW | |
from torch.utils.tensorboard.writer import SummaryWriter | |
from tqdm import tqdm | |
from guided_diffusion import dist_util, logger | |
from guided_diffusion.fp16_util import MixedPrecisionTrainer | |
from guided_diffusion.nn import update_ema | |
from guided_diffusion.resample import LossAwareSampler, UniformSampler | |
# from .train_util import TrainLoop3DRec | |
from guided_diffusion.train_util import (TrainLoop, calc_average_loss, | |
find_ema_checkpoint, | |
find_resume_checkpoint, | |
get_blob_logdir, log_loss_dict, | |
log_rec3d_loss_dict, | |
parse_resume_step_from_filename) | |
from guided_diffusion.gaussian_diffusion import ModelMeanType | |
from ldm.modules.encoders.modules import FrozenClipImageEmbedder, TextEmbedder, FrozenCLIPTextEmbedder, FrozenOpenCLIPImagePredictionEmbedder, FrozenOpenCLIPImageEmbedder | |
import dnnlib | |
from dnnlib.util import requires_grad | |
from dnnlib.util import calculate_adaptive_weight | |
from ..train_util_diffusion import TrainLoop3DDiffusion | |
from ..cvD.nvsD_canoD import TrainLoop3DcvD_nvsD_canoD | |
from guided_diffusion.continuous_diffusion_utils import get_mixed_prediction, different_p_q_objectives, kl_per_group_vada, kl_balancer | |
# from .train_util_diffusion_lsgm_noD_joint import TrainLoop3DDiffusionLSGMJointnoD # joint diffusion and rec class | |
# from .controlLDM import TrainLoop3DDiffusionLSGM_Control # joint diffusion and rec class | |
from .train_util_diffusion_lsgm_noD_joint import TrainLoop3DDiffusionLSGMJointnoD # joint diffusion and rec class | |
# ! add new schedulers from https://github.com/Stability-AI/generative-models | |
from .crossattn_cldm import TrainLoop3DDiffusionLSGM_crossattn | |
# import SD stuffs | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
from contextlib import contextmanager | |
from omegaconf import ListConfig, OmegaConf | |
from sgm.modules import UNCONDITIONAL_CONFIG | |
from sgm.util import (default, disabled_train, get_obj_from_str, | |
instantiate_from_config, log_txt_as_img) | |
from transport import create_transport, Sampler | |
# from sgm.sampling_utils.demo.streamlit_helpers import init_sampling | |
class FlowMatchingEngine(TrainLoop3DDiffusionLSGM_crossattn): | |
def __init__( | |
self, | |
*, | |
rec_model, | |
denoise_model, | |
diffusion, | |
sde_diffusion, | |
control_model, | |
control_key, | |
only_mid_control, | |
loss_class, | |
data, | |
eval_data, | |
batch_size, | |
microbatch, | |
lr, | |
ema_rate, | |
log_interval, | |
eval_interval, | |
save_interval, | |
resume_checkpoint, | |
resume_cldm_checkpoint=None, | |
use_fp16=False, | |
fp16_scale_growth=0.001, | |
schedule_sampler=None, | |
weight_decay=0, | |
lr_anneal_steps=0, | |
iterations=10001, | |
ignore_resume_opt=False, | |
freeze_ae=False, | |
denoised_ae=True, | |
triplane_scaling_divider=10, | |
use_amp=False, | |
diffusion_input_size=224, | |
normalize_clip_encoding=False, | |
scale_clip_encoding=1, | |
cfg_dropout_prob=0, | |
cond_key='img_sr', | |
use_eos_feature=False, | |
compile=False, | |
snr_type='lognorm', | |
# denoiser_config, | |
# conditioner_config: Union[None, Dict, ListConfig, | |
# OmegaConf] = None, | |
# sampler_config: Union[None, Dict, ListConfig, OmegaConf] = None, | |
# loss_fn_config: Union[None, Dict, ListConfig, OmegaConf] = None, | |
**kwargs): | |
super().__init__(rec_model=rec_model, | |
denoise_model=denoise_model, | |
diffusion=diffusion, | |
sde_diffusion=sde_diffusion, | |
control_model=control_model, | |
control_key=control_key, | |
only_mid_control=only_mid_control, | |
loss_class=loss_class, | |
data=data, | |
eval_data=eval_data, | |
batch_size=batch_size, | |
microbatch=microbatch, | |
lr=lr, | |
ema_rate=ema_rate, | |
log_interval=log_interval, | |
eval_interval=eval_interval, | |
save_interval=save_interval, | |
resume_checkpoint=resume_checkpoint, | |
resume_cldm_checkpoint=resume_cldm_checkpoint, | |
use_fp16=use_fp16, | |
fp16_scale_growth=fp16_scale_growth, | |
schedule_sampler=schedule_sampler, | |
weight_decay=weight_decay, | |
lr_anneal_steps=lr_anneal_steps, | |
iterations=iterations, | |
ignore_resume_opt=ignore_resume_opt, | |
freeze_ae=freeze_ae, | |
denoised_ae=denoised_ae, | |
triplane_scaling_divider=triplane_scaling_divider, | |
use_amp=use_amp, | |
diffusion_input_size=diffusion_input_size, | |
normalize_clip_encoding=normalize_clip_encoding, | |
scale_clip_encoding=scale_clip_encoding, | |
cfg_dropout_prob=cfg_dropout_prob, | |
cond_key=cond_key, | |
use_eos_feature=use_eos_feature, | |
compile=compile, | |
**kwargs) | |
# ! sgm diffusion pipeline | |
# ! reuse the conditioner | |
if self.cond_key == 'caption': | |
ldm_configs = OmegaConf.load( | |
'sgm/configs/t23d-clipl-compat-fm.yaml')['ldm_configs'] | |
else: | |
assert 'lognorm' in snr_type | |
if snr_type == 'lognorm': # by default | |
ldm_configs = OmegaConf.load( | |
'sgm/configs/img23d-clipl-compat-fm-lognorm.yaml')['ldm_configs'] | |
# elif snr_type == 'lognorm-mv': | |
# ldm_configs = OmegaConf.load( | |
# 'sgm/configs/mv23d-clipl-compat-fm-lognorm-noclip.yaml')['ldm_configs'] | |
elif snr_type == 'lognorm-mv-plucker': | |
ldm_configs = OmegaConf.load( | |
# 'sgm/configs/mv23d-plucker-clipl-compat-fm-lognorm.yaml')['ldm_configs'] | |
'sgm/configs/mv23d-plucker-clipl-compat-fm-lognorm-noclip.yaml')['ldm_configs'] | |
else: | |
ldm_configs = OmegaConf.load( | |
'sgm/configs/img23d-clipl-compat-fm.yaml')['ldm_configs'] | |
self.loss_fn = ( | |
instantiate_from_config(ldm_configs.loss_fn_config) | |
# if loss_fn_config is not None | |
# else None | |
) | |
# self.denoiser = instantiate_from_config( | |
# ldm_configs.denoiser_config).to(dist_util.dev()) | |
self.transport_sampler = Sampler(self.loss_fn.transport) | |
self.conditioner = instantiate_from_config( | |
default(ldm_configs.conditioner_config, | |
UNCONDITIONAL_CONFIG)).to(dist_util.dev()) | |
# ! setup optimizer (with cond embedder params here) | |
self._setup_opt2() | |
self._load_model2() | |
def _setup_opt(self): | |
pass # see below | |
def _setup_opt2(self): | |
# ! add trainable conditioner parameters | |
# https://github.com/Stability-AI/generative-models/blob/fbdc58cab9f4ee2be7a5e1f2e2787ecd9311942f/sgm/models/diffusion.py#L219 | |
# params = list(self.ddpm_model.parameters()) | |
self.opt = AdamW([{ | |
'name': 'ddpm', | |
'params': self.ddpm_model.parameters(), | |
}, | |
], | |
lr=self.lr, | |
weight_decay=self.weight_decay) | |
embedder_params = [] | |
for embedder in self.conditioner.embedders: | |
if embedder.is_trainable: | |
embedder_params = embedder_params + list(embedder.parameters()) | |
if len(embedder_params) != 0: | |
self.opt.add_param_group( | |
{ | |
'name': 'embedder', | |
'params': embedder_params, | |
'lr': self.lr*0.1, # smaller lr to finetune dino/clip | |
} | |
) | |
# if self.train_vae: | |
# for rec_param_group in self._init_optim_groups(self.rec_model): | |
# self.opt.add_param_group(rec_param_group) | |
print(self.opt) | |
def save(self, mp_trainer=None, model_name='ddpm'): | |
# save embedder params also | |
super().save(mp_trainer, model_name) | |
# save embedder ckpt | |
if dist_util.get_rank() == 0: | |
for embedder in self.conditioner.embedders: | |
if embedder.is_trainable: | |
# embedder_params = embedder_params + list(embedder.parameters()) | |
model_name = embedder.__class__.__name__ | |
filename = f"embedder_{model_name}{(self.step+self.resume_step):07d}.pt" | |
with bf.BlobFile(bf.join(get_blob_logdir(), filename), | |
"wb") as f: | |
th.save(embedder.state_dict(), f) | |
dist_util.synchronize() | |
def _load_model2(self): | |
# ! load embedder | |
for embedder in self.conditioner.embedders: | |
if embedder.is_trainable: | |
# embedder_params = embedder_params + list(embedder.parameters()) | |
model_name = embedder.__class__.__name__ | |
filename = f"embedder_{model_name}{(self.step+self.resume_step):07d}.pt" | |
# embedder_FrozenDinov2ImageEmbedderMV2115000.pt | |
# with bf.BlobFile(bf.join(get_blob_logdir(), filename), | |
# "wb") as f: | |
# th.save(embedder.state_dict(), f) | |
split = self.resume_checkpoint.split("model") | |
resume_checkpoint = str( | |
Path(split[0]) / filename) | |
if os.path.exists(resume_checkpoint): | |
if dist.get_rank() == 0: | |
logger.log( | |
f"loading cond embedder from checkpoint: {resume_checkpoint}...") | |
# if model is None: | |
# model = self.model | |
embedder.load_state_dict( | |
dist_util.load_state_dict( | |
resume_checkpoint, | |
map_location=dist_util.dev(), | |
)) | |
else: | |
logger.log(f'{resume_checkpoint} not found.') | |
if dist_util.get_world_size() > 1: | |
dist_util.sync_params(embedder.parameters()) | |
def instantiate_cond_stage(self, normalize_clip_encoding, | |
scale_clip_encoding, cfg_dropout_prob, | |
use_eos_feature=False): | |
pass # placeholder function. initialized in the self.__init__() using SD api | |
# ! already merged | |
def prepare_ddpm(self, eps, mode='p'): | |
raise NotImplementedError('already implemented in self.denoiser') | |
# merged from noD.py | |
# use sota denoiser, loss_fn etc. | |
def ldm_train_step(self, batch, behaviour='cano', *args, **kwargs): | |
""" | |
add sds grad to all ae predicted x_0 | |
""" | |
# ! enable the gradient of both models | |
requires_grad(self.ddpm_model, True) | |
self.mp_trainer.zero_grad() # !!!! | |
if 'img' in batch: | |
batch_size = batch['img'].shape[0] | |
else: | |
batch_size = len(batch['caption']) | |
for i in range(0, batch_size, self.microbatch): | |
micro = { | |
k: | |
v[i:i + self.microbatch].to(dist_util.dev()) if isinstance( | |
v, th.Tensor) else v | |
for k, v in batch.items() | |
} | |
# move condition to self.dtype | |
# =================================== ae part =================================== | |
# with th.cuda.amp.autocast(dtype=th.bfloat16, | |
with th.cuda.amp.autocast(dtype=self.dtype, | |
enabled=self.mp_trainer.use_amp): | |
loss = th.tensor(0.).to(dist_util.dev()) | |
assert 'latent' in micro | |
vae_out = {self.latent_name: micro['latent']} | |
# else: | |
# vae_out = self.ddp_rec_model( | |
# img=micro['img_to_encoder'], | |
# c=micro['c'], | |
# behaviour='encoder_vae', | |
# ) # pred: (B, 3, 64, 64) | |
eps = vae_out[self.latent_name] / self.triplane_scaling_divider | |
# eps = vae_out.pop(self.latent_name) | |
# if 'bg_plane' in vae_out: | |
# eps = th.cat((eps, vae_out['bg_plane']), | |
# dim=1) # include background, B 12+4 32 32 | |
# ! SD loss | |
# cond = self.get_c_input(micro, bs=eps.shape[0]) | |
micro['img-c'] = { | |
'img': micro['img'].to(self.dtype), | |
'c': micro['c'].to(self.dtype), | |
} | |
loss, loss_other_info = self.loss_fn(self.ddp_ddpm_model, | |
# self.denoiser, | |
self.conditioner, | |
eps.to(self.dtype), | |
micro) # type: ignore | |
loss = loss.mean() | |
log_rec3d_loss_dict({}) | |
log_rec3d_loss_dict({ | |
# 'eps_mean': | |
# eps.mean(), | |
# 'eps_std': | |
# eps.std([1, 2, 3]).mean(0), | |
# 'pred_x0_std': | |
# loss_other_info['model_output'].std([1, 2, 3]).mean(0), | |
"p_loss": | |
loss, | |
}) | |
self.mp_trainer.backward(loss) # joint gradient descent | |
# update ddpm accordingly | |
self.mp_trainer.optimize(self.opt) | |
# ! directly eval_cldm() for sampling. | |
# if dist_util.get_rank() == 0 and self.step % 500 == 0: | |
# self.log_control_images(vae_out, micro, loss_other_info) | |
def log_control_images(self, vae_out, micro, ddpm_ret): | |
if 'posterior' in vae_out: | |
vae_out.pop('posterior') # for calculating kl loss | |
vae_out_for_pred = {self.latent_name: vae_out[self.latent_name][0:1].to(self.dtype)} | |
with th.cuda.amp.autocast(dtype=self.dtype, | |
enabled=self.mp_trainer.use_amp): | |
pred = self.ddp_rec_model(latent=vae_out_for_pred, | |
c=micro['c'][0:1], | |
behaviour=self.render_latent_behaviour) | |
assert isinstance(pred, dict) | |
pred_img = pred['image_raw'] | |
if 'img' in micro: | |
gt_img = micro['img'] | |
else: | |
gt_img = th.zeros_like(pred['image_raw']) | |
if 'depth' in micro: | |
gt_depth = micro['depth'] | |
if gt_depth.ndim == 3: | |
gt_depth = gt_depth.unsqueeze(1) | |
gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() - | |
gt_depth.min()) | |
else: | |
gt_depth = th.zeros_like(gt_img[:, 0:1, ...]) | |
if 'image_depth' in pred: | |
pred_depth = pred['image_depth'] | |
pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() - | |
pred_depth.min()) | |
else: | |
pred_depth = th.zeros_like(gt_depth) | |
gt_img = self.pool_128(gt_img) | |
gt_depth = self.pool_128(gt_depth) | |
# cond = self.get_c_input(micro) | |
# hint = th.cat(cond['c_concat'], 1) | |
gt_vis = th.cat( | |
[ | |
gt_img, | |
gt_img, | |
gt_img, | |
# self.pool_128(hint), | |
# gt_img, | |
gt_depth.repeat_interleave(3, dim=1) | |
], | |
dim=-1)[0:1] # TODO, fail to load depth. range [0, 1] | |
# eps_t_p_3D = eps_t_p.reshape(batch_size, eps_t_p.shape[1]//3, 3, -1) # B C 3 L | |
# self.sampler | |
noised_latent, sigmas, x_start = [ | |
ddpm_ret[k] for k in ['noised_input', 'sigmas', 'model_output'] | |
] | |
noised_latent = { | |
'latent_normalized_2Ddiffusion': | |
noised_latent[0:1].to(self.dtype) * self.triplane_scaling_divider, | |
} | |
denoised_latent = { | |
'latent_normalized_2Ddiffusion': | |
x_start[0:1].to(self.dtype) * self.triplane_scaling_divider, | |
} | |
with th.cuda.amp.autocast(dtype=self.dtype, | |
enabled=self.mp_trainer.use_amp): | |
noised_ae_pred = self.ddp_rec_model( | |
img=None, | |
c=micro['c'][0:1], | |
latent=noised_latent, | |
behaviour=self.render_latent_behaviour) | |
# pred_x0 = self.sde_diffusion._predict_x0_from_eps( | |
# eps_t_p, pred_eps_p, logsnr_p) # for VAE loss, denosied latent | |
# pred_xstart_3D | |
denoised_ae_pred = self.ddp_rec_model( | |
img=None, | |
c=micro['c'][0:1], | |
latent=denoised_latent, | |
# latent=pred_x0[0:1] * self. | |
# triplane_scaling_divider, # TODO, how to define the scale automatically? | |
behaviour=self.render_latent_behaviour) | |
pred_vis = th.cat( | |
[ | |
self.pool_128(img) for img in ( | |
pred_img[0:1], | |
noised_ae_pred['image_raw'][0:1], | |
denoised_ae_pred['image_raw'][0:1], # controlnet result | |
pred_depth[0:1].repeat_interleave(3, dim=1)) | |
], | |
dim=-1) # B, 3, H, W | |
if 'img' in micro: | |
vis = th.cat([gt_vis, pred_vis], | |
dim=-2)[0].permute(1, 2, | |
0).cpu() # ! pred in range[-1, 1] | |
else: | |
vis = pred_vis[0].permute(1, 2, 0).cpu() | |
# vis_grid = torchvision.utils.make_grid(vis) # HWC | |
vis = vis.numpy() * 127.5 + 127.5 | |
vis = vis.clip(0, 255).astype(np.uint8) | |
img_save_path = f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{sigmas[0].item():3}.jpg' | |
Image.fromarray(vis).save(img_save_path) | |
# if self.cond_key == 'caption': | |
# with open(f'{logger.get_dir()}/{self.step+self.resume_step}caption_{t_p[0].item():3}.txt', 'w') as f: | |
# f.write(micro['caption'][0]) | |
print('log denoised vis to: ', img_save_path) | |
th.cuda.empty_cache() | |
def sample( | |
self, | |
cond: Dict, | |
uc: Union[Dict, None] = None, | |
batch_size: int = 16, | |
shape: Union[None, Tuple, List] = None, | |
use_cfg=True, | |
# cfg_scale=4, # default value in SiT | |
# cfg_scale=1.5, # default value in SiT | |
cfg_scale=4.0, # default value in SiT | |
**kwargs, | |
): | |
# self.sampler | |
sample_fn = self.transport_sampler.sample_ode(num_steps=250, cfg=True) # default ode sampling setting. | |
# th.manual_seed(42) # reproducible | |
zs = th.randn(batch_size, *shape).to(dist_util.dev()).to(self.dtype) | |
assert use_cfg | |
# sample_model_kwargs = {'uc': uc, 'cond': cond} | |
model_fn = self.ddpm_model.forward_with_cfg # default | |
# ! prepare_inputs in VanillaCFG, for compat issue | |
c_out = {} | |
for k in cond: | |
if k in ["vector", "crossattn", "concat"]: | |
c_out[k] = th.cat((cond[k], uc[k]), 0) | |
else: | |
assert cond[k] == uc[k] | |
c_out[k] = cond[k] | |
sample_model_kwargs = {'context': c_out, 'cfg_scale': cfg_scale} | |
zs = th.cat([zs, zs], 0) | |
with th.cuda.amp.autocast(dtype=self.dtype, | |
enabled=self.mp_trainer.use_amp): | |
samples = sample_fn(zs, model_fn, **sample_model_kwargs)[-1] | |
samples, _ = samples.chunk(2, dim=0) # Remove null class samples | |
return samples | |
def eval_cldm( | |
self, | |
prompt="", | |
save_img=False, | |
use_train_trajectory=False, | |
camera=None, | |
num_samples=1, | |
num_instances=1, | |
unconditional_guidance_scale=4.0, # default value in neural ode | |
export_mesh=False, | |
**kwargs, | |
): | |
# ! slightly modified for new API. combined with | |
# /cpfs01/shared/V2V/V2V_hdd/yslan/Repo/generative-models/sgm/models/diffusion.py:249 log_images() | |
# TODO, support batch_size > 1 | |
self.ddpm_model.eval() | |
# assert unconditional_guidance_scale == 4.0 | |
args = dnnlib.EasyDict( | |
dict( | |
batch_size=1, | |
image_size=self.diffusion_input_size, | |
denoise_in_channels=self.rec_model.decoder.triplane_decoder. | |
out_chans, # type: ignore | |
clip_denoised=False, | |
class_cond=False)) | |
model_kwargs = {} | |
uc = None | |
log = dict() | |
ucg_keys = [self.cond_key] # i23d | |
sampling_kwargs = {'cfg_scale': unconditional_guidance_scale} | |
N = num_samples # hard coded, to update | |
z_shape = ( | |
N, | |
self.ddpm_model.in_channels if not self.ddpm_model.roll_out else | |
3 * self.ddpm_model.in_channels, # type: ignore | |
self.diffusion_input_size, | |
self.diffusion_input_size) | |
data = iter(self.data) | |
def sample_and_save(batch_c,idx=0): | |
with th.cuda.amp.autocast(dtype=self.dtype, | |
enabled=self.mp_trainer.use_amp): | |
c, uc = self.conditioner.get_unconditional_conditioning( | |
batch_c, | |
force_uc_zero_embeddings=ucg_keys | |
if len(self.conditioner.embedders) > 0 else [], | |
) | |
for k in c: | |
if isinstance(c[k], th.Tensor): | |
# c[k], uc[k] = map(lambda y: y[k][:N].to(dist_util.dev()), | |
# (c, uc)) | |
assert c[k].shape[0] == 1 | |
c[k], uc[k] = map(lambda y: y[k].repeat_interleave(N, 0).to(dist_util.dev()), | |
(c, uc)) # support bs>1 sampling given a condition | |
samples = self.sample(c, | |
shape=z_shape[1:], | |
uc=uc, | |
batch_size=N, | |
**sampling_kwargs) | |
# st() # do rendering first | |
# ! get c | |
(Path(logger.get_dir())/f'{self.step+self.resume_step}').mkdir(exist_ok=True, parents=True) | |
if 'img' in self.cond_key: | |
img_save_path = f'{logger.get_dir()}/{self.step+self.resume_step}/imgcond-{idx}.jpg' | |
if 'c' in self.cond_key: | |
torchvision.utils.save_image(batch_c['img'][0], img_save_path, value_range=(-1,1), normalize=True, padding=0) # torch.Size([24, 6, 3, 256, 256]) | |
else: | |
torchvision.utils.save_image(batch_c['img'], img_save_path, value_range=(-1,1), normalize=True, padding=0) | |
assert camera is not None | |
batch = {'c': camera.clone()[:24]} | |
# rendering | |
for i in range(samples.shape[0]): | |
th.cuda.empty_cache() | |
# ! render sampled latent | |
name_prefix = f'idx-{idx}-cfg={unconditional_guidance_scale}_sample-{i}' | |
if self.cond_key == 'caption': | |
name_prefix = f'{name_prefix}_{prompt}' | |
with th.cuda.amp.autocast(dtype=self.dtype, | |
enabled=self.mp_trainer.use_amp): | |
self.render_video_given_triplane( | |
samples[i:i+1].to(self.dtype), | |
self.rec_model, # compatible with join_model | |
name_prefix=name_prefix, | |
save_img=save_img, | |
render_reference=batch, | |
export_mesh=export_mesh, | |
render_all=True) | |
if self.cond_key == 'caption': | |
batch_c = {self.cond_key: prompt} | |
sample_and_save(batch_c) | |
else: | |
for idx, batch in enumerate(data): | |
# batch = next(data) # using same cond here | |
if self.cond_key == 'img-c': | |
batch_c = { | |
self.cond_key: { | |
'img': batch['img'].to(self.dtype).to(dist_util.dev()), | |
'c': batch['c'].to(self.dtype).to(dist_util.dev()), | |
}, | |
'img': batch['img'].to(self.dtype).to(dist_util.dev()) # required by clip | |
} | |
else: | |
batch_c = {self.cond_key: batch[self.cond_key].to(dist_util.dev()).to(self.dtype)} | |
sample_and_save(batch_c, idx) | |
self.ddpm_model.train() | |
def eval_i23d_and_export( | |
self, | |
inp_img, | |
num_steps=250, | |
seed=42, | |
mesh_size=192, | |
mesh_thres=10, | |
unconditional_guidance_scale=4.0, # default value in neural ode | |
# camera, | |
prompt="", | |
save_img=False, | |
use_train_trajectory=False, | |
num_samples=1, | |
num_instances=1, | |
export_mesh=True, | |
**kwargs, | |
): | |
# output_model, output_video = './logs/LSGM/inference/Objaverse/i23d/dit-L2/gradio_app/mesh/cfg=4.0_sample-0.obj', './logs/LSGM/inference/Objaverse/i23d/dit-L2/gradio_app/triplane_cfg=4.0_sample-0.mp4' | |
# return output_model, output_video | |
logger.log( | |
num_steps, | |
unconditional_guidance_scale, | |
seed, | |
mesh_size, | |
mesh_thres, | |
) | |
camera = th.load('assets/objv_eval_pose.pt', map_location=dist_util.dev())[:] | |
inp_img = th.from_numpy(inp_img).permute(2,0,1).unsqueeze(0) / 127.5 - 1 # to [-1,1] | |
# for gradio demo | |
self.ddpm_model.eval() | |
# assert unconditional_guidance_scale == 4.0 | |
args = dnnlib.EasyDict( | |
dict( | |
batch_size=1, | |
image_size=self.diffusion_input_size, | |
denoise_in_channels=self.rec_model.decoder.triplane_decoder. | |
out_chans, # type: ignore | |
clip_denoised=False, | |
class_cond=False)) | |
model_kwargs = {} | |
uc = None | |
log = dict() | |
ucg_keys = [self.cond_key] # i23d | |
sampling_kwargs = {'cfg_scale': unconditional_guidance_scale, 'num_steps': num_steps, 'seed': seed} | |
N = num_samples # hard coded, to update | |
z_shape = ( | |
N, | |
self.ddpm_model.in_channels if not self.ddpm_model.roll_out else | |
3 * self.ddpm_model.in_channels, # type: ignore | |
self.diffusion_input_size, | |
self.diffusion_input_size) | |
# data = iter(self.data) | |
assert camera is not None | |
batch = {'c': camera.clone()[:24]} | |
def sample_and_save(batch_c): | |
with th.cuda.amp.autocast(dtype=self.dtype, | |
enabled=self.mp_trainer.use_amp): | |
c, uc = self.conditioner.get_unconditional_conditioning( | |
batch_c, | |
force_uc_zero_embeddings=ucg_keys | |
if len(self.conditioner.embedders) > 0 else [], | |
) | |
for k in c: | |
if isinstance(c[k], th.Tensor): | |
# c[k], uc[k] = map(lambda y: y[k][:N].to(dist_util.dev()), | |
# (c, uc)) | |
assert c[k].shape[0] == 1 | |
c[k], uc[k] = map(lambda y: y[k].repeat_interleave(N, 0).to(dist_util.dev()), | |
(c, uc)) # support bs>1 sampling given a condition | |
samples = self.sample(c, | |
shape=z_shape[1:], | |
uc=uc, | |
batch_size=N, | |
**sampling_kwargs) | |
# rendering | |
all_vid_dump_path = [] | |
all_mesh_dump_path = [] | |
for i in range(samples.shape[0]): | |
th.cuda.empty_cache() | |
# ! render sampled latent | |
name_prefix = f'cfg_{unconditional_guidance_scale}_sample-{i}' | |
if self.cond_key == 'caption': | |
name_prefix = f'{name_prefix}_{prompt}' | |
with th.cuda.amp.autocast(dtype=self.dtype, | |
enabled=self.mp_trainer.use_amp): | |
vid_dump_path, mesh_dump_path = self.render_video_given_triplane( | |
samples[i:i+1].to(self.dtype), | |
self.rec_model, # compatible with join_model | |
name_prefix=name_prefix, | |
save_img=save_img, | |
render_reference=batch, | |
export_mesh=export_mesh, | |
render_all=True, | |
mesh_size=mesh_size, | |
mesh_thres=mesh_thres) | |
all_vid_dump_path.append(vid_dump_path) | |
all_mesh_dump_path.append(mesh_dump_path) | |
# return all_vid_dump_path, all_mesh_dump_path | |
return all_vid_dump_path[0], all_mesh_dump_path[0] # for compat issue | |
if self.cond_key == 'caption': | |
batch_c = {self.cond_key: prompt} | |
return sample_and_save(batch_c) | |
else: | |
# for idx, batch in enumerate(data): | |
# batch = next(data) # using same cond here | |
# if self.cond_key == 'img-c': | |
# batch_c = { | |
# self.cond_key: { | |
# 'img': batch['img'].to(self.dtype).to(dist_util.dev()), | |
# 'c': batch['c'].to(self.dtype).to(dist_util.dev()), | |
# }, | |
# 'img': batch['img'].to(self.dtype).to(dist_util.dev()) # required by clip | |
# } | |
# else: | |
batch_c = {self.cond_key: inp_img.to(dist_util.dev()).to(self.dtype)} | |
return sample_and_save(batch_c) |