RAR / modeling /rar.py
yucornetto's picture
upload
51ce47d verified
raw
history blame
17.6 kB
"""This file contains the model definition of TiTok.
Copyright (2024) Bytedance Ltd. and/or its affiliates
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Reference:
https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/transformer.py
https://github.com/facebookresearch/DiT/blob/main/models.py
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from modeling.modules import BaseModel
from functools import partial
from timm.layers import Mlp
from typing import Optional
import numpy as np
import random
# util function
def build_causal_mask(seq_length):
mask = torch.empty(seq_length, seq_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
# weight init
def init_weights(module):
if (isinstance(module, nn.Linear) or isinstance(module, nn.Conv1d) or
isinstance(module, nn.Conv2d) or isinstance(module, nn.Conv3d)):
module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=0.02)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=0.02)
elif isinstance(module, nn.LayerNorm):
if module.bias is not None:
module.bias.data.zero_()
if module.weight is not None:
module.weight.data.fill_(1.0)
# attention layer with KV cache supported
class Attention(nn.Module):
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
qk_norm: bool = False,
attn_drop: float = 0.,
proj_drop: float = 0.,
norm_layer: nn.Module = nn.LayerNorm,
) -> None:
super().__init__()
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
self.fused_attn = True
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.kv_cache = False
self.k_cache = None
self.v_cache = None
def reset_kv_cache(self):
self.k_cache = None
self.v_cache = None
def forward(self, x: torch.Tensor, attn_mask=None) -> torch.Tensor:
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
q, k = self.q_norm(q), self.k_norm(k)
if self.kv_cache:
if self.k_cache is None and self.v_cache is None:
k_cache = k
v_cache = v
else:
assert N in [1, 2], f"x.shape {x.shape}"
k_cache = torch.cat([self.k_cache, k], dim=-2)
v_cache = torch.cat([self.v_cache, v], dim=-2)
self.k_cache = k_cache
self.v_cache = v_cache
k = k_cache
v = v_cache
x = F.scaled_dot_product_attention(
q, k, v, attn_mask=attn_mask,
dropout_p=self.attn_drop.p if self.training else 0.,
)
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def modulate(x, shift, scale):
return x * (1 + scale) + shift
class FinalLayer(nn.Module):
def __init__(self, dim, norm_layer):
super().__init__()
self.norm_final = norm_layer(dim, elementwise_affine=False)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(), nn.Linear(dim, 2*dim)
)
def forward(self, x, c):
scale, shift = self.adaLN_modulation(c).chunk(2, dim=-1)
x = modulate(self.norm_final(x), shift, scale)
return x
# basic transformer block
class Block(nn.Module):
def __init__(
self,
dim: int,
num_heads: int,
mlp_ratio: float = 4.,
qkv_bias: bool = False,
qk_norm: bool = False,
proj_drop: float = 0.,
attn_drop: float = 0.,
act_layer: nn.Module = nn.GELU,
norm_layer: nn.Module = nn.LayerNorm,
mlp_layer: nn.Module = Mlp,
) -> None:
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim=dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_norm=qk_norm,
attn_drop=attn_drop,
proj_drop=proj_drop,
norm_layer=norm_layer,
)
self.norm2 = norm_layer(dim)
self.mlp = mlp_layer(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
drop=proj_drop,
)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(dim, 6 * dim, bias=True)
)
def forward(self, x: torch.Tensor, attn_mask=None, c = None) -> torch.Tensor:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=-1)
x = x + gate_msa * self.attn(modulate(self.norm1(x), shift_msa, scale_msa), attn_mask=attn_mask)
x = x + gate_mlp * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
return x
class RAR(BaseModel):
def __init__(self, config):
super().__init__()
self.config = config
# parse the configs
embed_dim = config.model.generator.hidden_size
depth = config.model.generator.num_hidden_layers
num_heads = config.model.generator.num_attention_heads
intermediate_size = config.model.generator.intermediate_size
mlp_ratio = intermediate_size / embed_dim
image_seq_len = config.model.generator.image_seq_len
target_codebook_size = config.model.vq_model.codebook_size
condition_num_classes = config.model.generator.condition_num_classes
norm_layer=partial(nn.LayerNorm, eps=1e-6)
dropout_rate = config.model.generator.dropout
attn_dropout_rate = config.model.generator.attn_drop
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.blocks = nn.ModuleList([
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=True,
qk_norm=True,
proj_drop=dropout_rate,
attn_drop=attn_dropout_rate,
norm_layer=norm_layer)
for i in range(depth)])
self.embeddings = nn.Embedding(
target_codebook_size + 1 + condition_num_classes + 1, embed_dim)
self.pos_embed = nn.init.trunc_normal_(
nn.Parameter(torch.zeros(1, image_seq_len + 1024, embed_dim)), 0., 0.02)
self.target_aware_pos_embed = nn.init.trunc_normal_(
nn.Parameter(torch.zeros(1, image_seq_len + 1024, embed_dim)), 0., 0.02)
# number of steps == image_seq_len
self.timesteps_embeddings = nn.init.trunc_normal_(
nn.Parameter(torch.zeros(1, image_seq_len + 100, embed_dim)), 0., 0.02)
self.adaln_before_head = FinalLayer(embed_dim, norm_layer=norm_layer)
self.lm_head = nn.Linear(embed_dim,
target_codebook_size, bias=True)
self.condition_num_classes = condition_num_classes
self.image_seq_len = image_seq_len
self.target_codebook_size = target_codebook_size
self.none_condition_id = self.condition_num_classes + self.target_codebook_size + 1
self.apply(init_weights)
attn_mask = build_causal_mask(self.image_seq_len + 1024) # include condition
self.register_buffer('attn_mask', attn_mask, persistent=False)
self.use_checkpoint = config.model.generator.get("use_checkpoint", False)
# init for adaln-zero.
nn.init.constant_(self.adaln_before_head.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.adaln_before_head.adaLN_modulation[-1].bias, 0)
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
self.random_ratio = 0.0
def enable_kv_cache(self):
for block in self.blocks:
block.attn.kv_cache = True
block.attn.reset_kv_cache()
def disable_kv_cache(self):
for block in self.blocks:
block.attn.kv_cache = False
block.attn.reset_kv_cache()
def sample_orders(self, x):
batch_size = x.shape[0]
shuffled_orders = []
for _ in range(batch_size):
if random.random() < self.random_ratio:
# random order
shuffled_orders.append(torch.randperm(self.image_seq_len, device=x.device))
else:
# raster order
shuffled_orders.append(torch.arange(self.image_seq_len, device=x.device))
shuffled_orders = torch.stack(shuffled_orders)
return shuffled_orders.to(x.device)
def set_random_ratio(self, new_ratio):
self.random_ratio = new_ratio
def get_raster_orders(self, x):
batch_size = x.shape[0]
shuffled_orders = torch.stack([torch.arange(self.image_seq_len, device=x.device) for _ in range(batch_size)])
return shuffled_orders
def shuffle(self, x, orders):
batch_size, seq_len = x.shape[:2]
batch_indices = torch.arange(batch_size).unsqueeze(1).expand(-1, seq_len)
shuffled_x = x[batch_indices, orders]
return shuffled_x
def unshuffle(self, shuffled_x, orders):
# Unshuffle the tensor based on the original orders
batch_size, seq_len = shuffled_x.shape[:2]
batch_indices = torch.arange(batch_size).unsqueeze(1).expand(-1, seq_len)
unshuffled_x = torch.zeros_like(shuffled_x)
unshuffled_x[batch_indices, orders] = shuffled_x
return unshuffled_x
def preprocess_condition(self, condition, cond_drop_prob=0.0):
# Set class condition to None condition
drop_label_mask = torch.rand_like(condition, dtype=torch.float) < cond_drop_prob
condition = condition + self.target_codebook_size + 1 # [0, 999] -> [codebook_size + 1, codebook_size + 999]
condition[drop_label_mask] = self.none_condition_id
return condition
def get_none_condition(self,
condition
):
return torch.full_like(condition, self.none_condition_id)
def forward(self, input_ids, condition, return_labels=False):
orders = self.sample_orders(input_ids)
return self.forward_fn(input_ids, condition, return_labels, orders)
def forward_fn(self, input_ids, condition,
return_labels=False,
orders=None,
is_sampling=False):
# TODO: optimize the inference time where the computation of pos_embed etc can be shared across sampling steps.
# Token space:
# [0, codebook_size - 1] : those are the learned quantized image tokens
# codebook_size : the mask token used to mask image tokens
# [codebook_size + 1, codebook_size + nclass] : the imagenet class tokens
# codebook_size + 1 + nclass : the class drop label
if orders is None:
orders = self.get_raster_orders(input_ids)
labels = input_ids.clone()
# prepend condition token
input_ids = torch.cat([condition.view(condition.shape[0], -1),
input_ids.view(input_ids.shape[0], -1),], dim=1)
embeddings = self.embeddings(input_ids)
condition_token = embeddings[:, 0]
# prepare positional embeddings.
# shuffle pos embed
pos_embed = self.pos_embed.repeat(input_ids.shape[0], 1, 1)
# cls_token, condition, the permute does not impact these prefix tokens.
prefix = 2
pos_embed_prefix = pos_embed[:, :prefix]
pos_embed_postfix = self.shuffle(pos_embed[:, prefix:prefix+self.image_seq_len], orders)
# prepare target-aware positional embeddings.
target_aware_pos_embed = self.target_aware_pos_embed.repeat(input_ids.shape[0], 1, 1)
# target_aware_pos_embed_prefix = target_aware_pos_embed[:, :prefix]
target_aware_pos_embed_postfix = self.shuffle(target_aware_pos_embed[:, prefix:prefix+self.image_seq_len], orders)
if not is_sampling:
# shuffle labels
labels = self.shuffle(labels, orders)
# randomized permutation: during training, we need to shuffle the input_ids's order but not for sampling
embeddings = torch.cat([embeddings[:, :1], self.shuffle(embeddings[:, 1:], orders)], dim=1)
x = embeddings
# prepend the cls token
cls_tokens = self.cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# add original pos embed
x = x + torch.cat([pos_embed_prefix, pos_embed_postfix], dim=1)[:, :x.shape[1]]
# add target-aware pos embed
target_aware_pos_embed = torch.cat(
[torch.zeros_like(x[:, :prefix-1]), target_aware_pos_embed_postfix, torch.zeros_like(x[:, -1:])], dim=1
)
x = x + target_aware_pos_embed[:, :x.shape[1]]
# causal attention masking
attn_mask = self.attn_mask[:x.shape[1], :x.shape[1]]
# seperate condition token for each step, at generation, we start from 1 to seq len
condition_token = condition_token.unsqueeze(1) + self.timesteps_embeddings[:, :x.shape[1]]
if self.blocks[0].attn.kv_cache:
if self.blocks[0].attn.k_cache is not None and self.blocks[0].attn.v_cache is not None:
# only need to process the last token
x = x[:, -1:]
attn_mask = None
# only keep the last condition
condition_token = condition_token[:, -1:]
for idx, blk in enumerate(self.blocks):
if self.use_checkpoint:
x = torch.utils.checkpoint.checkpoint(
blk.forward, x, attn_mask, condition_token, use_reentrant=False)
else:
x = blk(x, attn_mask=attn_mask, c=condition_token)
if not self.blocks[0].attn.kv_cache:
# remove cls token
x = x[:, prefix - 1:]
condition_token = condition_token[:, prefix - 1:]
x = self.adaln_before_head(x, condition_token)
x = self.lm_head(x)
if return_labels:
return x, labels
return x
@torch.no_grad()
def generate(self,
condition,
guidance_scale,
randomize_temperature,
guidance_scale_pow,
kv_cache=True,
**kwargs):
condition = self.preprocess_condition(
condition, cond_drop_prob=0.0)
device = condition.device
num_samples = condition.shape[0]
ids = torch.full((num_samples, 0), -1, device=device)
cfg_scale = 0.
if kv_cache:
self.enable_kv_cache()
orders = None
cfg_orders = None
for step in range(self.image_seq_len):
# ref: https://github.com/sail-sg/MDT/blob/441d6a1d49781dbca22b708bbd9ed81e9e3bdee4/masked_diffusion/models.py#L513C13-L513C23
scale_pow = torch.ones((1), device=device) * guidance_scale_pow
scale_step = (1 - torch.cos(
((step / self.image_seq_len) ** scale_pow) * torch.pi)) * 1/2
cfg_scale = (guidance_scale - 1) * scale_step + 1
if guidance_scale != 0:
logits = self.forward_fn(
torch.cat([ids, ids], dim=0),
torch.cat([condition, self.get_none_condition(condition)], dim=0),
orders=cfg_orders, is_sampling=True)
cond_logits, uncond_logits = logits[:num_samples], logits[num_samples:]
logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale
else:
logits = self.forward_fn(
ids, condition, orders=orders, is_sampling=True
)
# keep the logit of last token
logits = logits[:, -1]
logits = logits / randomize_temperature
probs = F.softmax(logits, dim=-1)
sampled = torch.multinomial(probs, num_samples=1)
ids = torch.cat((ids, sampled), dim = -1)
self.disable_kv_cache()
return ids