alps / unitable /src /trainer /train_beit.py
yumikimi381's picture
Upload folder using huggingface_hub
daf0288 verified
raw
history blame
9.09 kB
import wandb
from pathlib import Path
from typing import Tuple, List, Union, Dict
from omegaconf import DictConfig
from hydra.utils import instantiate
import logging
import torch
import time
from torch import nn, Tensor, autograd
from torch.utils.data import DataLoader
from torch.nn.parallel import DistributedDataParallel as DDP
from ..utils import printer, compute_grad_norm
from ..trainer.utils import configure_optimizer_weight_decay
SNAPSHOT_KEYS = set(["EPOCH", "STEP", "OPTIMIZER", "LR_SCHEDULER", "MODEL", "LOSS"])
class BeitTrainer:
def __init__(
self,
device: int,
model: nn.Module,
model_vqvae: nn.Module,
log: logging.Logger,
exp_dir: Path,
snapshot: Path = None,
model_weights: Path = None, # only for testing
) -> None:
self.device = device
self.log = log
self.exp_dir = exp_dir
self.criterion = nn.CrossEntropyLoss()
assert (
snapshot is None or model_weights is None
), "Snapshot and model weights cannot be set at the same time."
self.model = model
if snapshot is not None and snapshot.is_file():
self.snapshot = self.load_snapshot(snapshot)
self.model.load_state_dict(self.snapshot["MODEL"])
self.start_epoch = self.snapshot["EPOCH"]
self.global_step = self.snapshot["STEP"]
elif model_weights is not None and model_weights.is_file():
self.load_model(model_weights)
else:
self.snapshot = None
self.start_epoch = 0
self.global_step = 0
self.model = self.model.to(device)
self.model = DDP(self.model, device_ids=[device])
self.model_vqvae = model_vqvae.to(device)
# https://discuss.pytorch.org/t/extra-10gb-memory-on-gpu-0-in-ddp-tutorial/118113
torch.cuda.set_device(device) # master gpu takes up extra memory
torch.cuda.empty_cache()
def train_epoch(self, epoch: int, grad_clip: float = None):
start = time.time()
total_loss = 0.0
total_samples = 0
for i, obj in enumerate(self.train_dataloader):
(trans_image, vqvae_image), bool_mask_pos = obj
trans_image, vqvae_image, bool_mask_pos = (
trans_image.to(self.device),
vqvae_image.to(self.device),
bool_mask_pos.to(self.device),
)
with torch.no_grad():
input_ids = self.model_vqvae.get_codebook_indices(vqvae_image).flatten(
1
)
bool_mask_pos = bool_mask_pos.flatten(1).to(torch.bool)
labels = input_ids[bool_mask_pos]
with autograd.detect_anomaly():
outputs = self.model(
trans_image, bool_mask_pos, return_all_tokens=False
)
loss = self.criterion(outputs, labels)
self.optimizer.zero_grad()
loss.backward()
if grad_clip:
nn.utils.clip_grad_norm_(
self.model.parameters(), max_norm=grad_clip
)
self.optimizer.step()
loss = loss.detach().cpu().data
total_loss += loss * trans_image.shape[0]
total_samples += trans_image.shape[0]
self.lr_scheduler.step()
self.global_step += 1
if i % 10 == 0:
grad_norm = compute_grad_norm(self.model)
lr = self.optimizer.param_groups[0]["lr"]
elapsed = time.time() - start
self.log.info(
printer(
self.device,
f"Epoch {epoch} Step {i + 1}/{len(self.train_dataloader)} | Loss {loss:.4f} ({total_loss / total_samples:.4f}) | Grad norm {grad_norm:.3f} | {total_samples / elapsed:4.1f} images/s | lr {lr:5.1e}",
)
)
if i % 100 == 0 and self.device == 0:
lr = self.optimizer.param_groups[0]["lr"]
log_info = {
"epoch": epoch,
"train_loss": loss,
"learning rate": lr,
"grad_norm": grad_norm,
}
wandb.log(
log_info,
step=self.global_step,
)
return total_loss / total_samples
def train(
self,
train_dataloader: DataLoader,
valid_dataloader: DataLoader,
train_cfg: DictConfig,
valid_cfg: DictConfig,
):
self.train_dataloader = train_dataloader
self.valid_dataloader = valid_dataloader
# ensure correct weight decay: https://github.com/karpathy/minGPT/blob/37baab71b9abea1b76ab957409a1cc2fbfba8a26/mingpt/model.py#L215
optim_params = configure_optimizer_weight_decay(
self.model.module, weight_decay=train_cfg.optimizer.weight_decay
)
self.optimizer = instantiate(train_cfg.optimizer, optim_params)
self.lr_scheduler = instantiate(
train_cfg.lr_scheduler, optimizer=self.optimizer
)
if self.snapshot is not None:
self.optimizer.load_state_dict(self.snapshot["OPTIMIZER"])
self.lr_scheduler.load_state_dict(self.snapshot["LR_SCHEDULER"])
best_loss = float("inf")
self.model.train()
for epoch in range(self.start_epoch, train_cfg.epochs):
train_dataloader.sampler.set_epoch(epoch)
train_loss = self.train_epoch(epoch, grad_clip=train_cfg.grad_clip)
torch.cuda.empty_cache()
valid_loss = self.valid(valid_cfg)
if self.device == 0:
wandb.log(
{
"train loss (epoch)": train_loss,
"valid loss (epoch)": valid_loss,
},
step=self.global_step,
)
if epoch % train_cfg.save_every == 0:
self.save_snapshot(epoch, best_loss)
if valid_loss < best_loss:
self.save_model(epoch)
best_loss = valid_loss
def valid(self, cfg: DictConfig):
total_samples = 0
total_loss = 0.0
self.model.eval()
for i, obj in enumerate(self.valid_dataloader):
(trans_image, vqvae_image), bool_mask_pos = obj
trans_image, vqvae_image, bool_mask_pos = (
trans_image.to(self.device),
vqvae_image.to(self.device),
bool_mask_pos.to(self.device),
)
with torch.no_grad():
input_ids = self.model_vqvae.get_codebook_indices(vqvae_image).flatten(
1
)
bool_mask_pos = bool_mask_pos.flatten(1).to(torch.bool)
labels = input_ids[bool_mask_pos]
outputs = self.model(
trans_image, bool_mask_pos, return_all_tokens=False
)
loss = self.criterion(outputs, labels)
loss = loss.detach().cpu().data
total_loss += loss * trans_image.shape[0]
total_samples += trans_image.shape[0]
if i % 10 == 0:
self.log.info(
printer(
self.device,
f"Valid: Step {i + 1}/{len(self.valid_dataloader)} | Loss {loss:.4f} ({total_loss / total_samples:.4f})",
)
)
return total_loss / total_samples
def save_model(self, epoch: int):
filename = Path(self.exp_dir) / "model" / f"epoch{epoch}_model.pt"
torch.save(self.model.module.state_dict(), filename)
self.log.info(printer(self.device, f"Saving model to {filename}"))
filename = Path(self.exp_dir) / "model" / f"best.pt"
torch.save(self.model.module.state_dict(), filename)
def load_model(self, path: Union[str, Path]):
self.model.load_state_dict(torch.load(path, map_location="cpu"))
self.log.info(printer(self.device, f"Loading model from {path}"))
def save_snapshot(self, epoch: int, best_loss: float):
state_info = {
"EPOCH": epoch + 1,
"STEP": self.global_step,
"OPTIMIZER": self.optimizer.state_dict(),
"LR_SCHEDULER": self.lr_scheduler.state_dict(),
"MODEL": self.model.module.state_dict(),
"LOSS": best_loss,
}
snapshot_path = Path(self.exp_dir) / "snapshot" / f"epoch{epoch}_snapshot.pt"
torch.save(state_info, snapshot_path)
self.log.info(printer(self.device, f"Saving snapshot to {snapshot_path}"))
def load_snapshot(self, path: Path):
self.log.info(printer(self.device, f"Loading snapshot from {path}"))
snapshot = torch.load(path, map_location="cpu")
assert SNAPSHOT_KEYS.issubset(snapshot.keys())
return snapshot