Spaces:
Build error
Build error
import copy | |
import time | |
import os | |
from huggingface_hub import snapshot_download | |
from .operators import * | |
import numpy as np | |
import onnxruntime as ort | |
import logging | |
from .postprocess import build_post_process | |
from typing import List | |
def get_deepdoc_directory(): | |
PROJECT_BASE = os.path.abspath( | |
os.path.join( | |
os.path.dirname(os.path.realpath(__file__)), | |
os.pardir | |
) | |
) | |
return PROJECT_BASE | |
def transform(data, ops=None): | |
""" transform """ | |
if ops is None: | |
ops = [] | |
for op in ops: | |
data = op(data) | |
if data is None: | |
return None | |
return data | |
def create_operators(op_param_list, global_config=None): | |
""" | |
create operators based on the config | |
Args: | |
params(list): a dict list, used to create some operators | |
""" | |
assert isinstance( | |
op_param_list, list), ('operator config should be a list') | |
ops = [] | |
for operator in op_param_list: | |
assert isinstance(operator, | |
dict) and len(operator) == 1, "yaml format error" | |
op_name = list(operator)[0] | |
param = {} if operator[op_name] is None else operator[op_name] | |
if global_config is not None: | |
param.update(global_config) | |
op = eval(op_name)(**param) | |
ops.append(op) | |
return ops | |
def load_model(model_dir, nm): | |
model_file_path = os.path.join(model_dir, nm + ".onnx") | |
if not os.path.exists(model_file_path): | |
raise ValueError("not find model file path {}".format( | |
model_file_path)) | |
options = ort.SessionOptions() | |
options.enable_cpu_mem_arena = False | |
options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL | |
options.intra_op_num_threads = 2 | |
options.inter_op_num_threads = 2 | |
if False and ort.get_device() == "GPU": | |
sess = ort.InferenceSession( | |
model_file_path, | |
options=options, | |
providers=['CUDAExecutionProvider']) | |
else: | |
sess = ort.InferenceSession( | |
model_file_path, | |
options=options, | |
providers=['CPUExecutionProvider']) | |
print(model_file_path) | |
print(sess.get_modelmeta().description) | |
return sess, sess.get_inputs()[0] | |
class RagFlowTextDetector: | |
""" | |
The class depends on TextDetector to perform its primary function of detecting text and retrieving bounding boxes. | |
""" | |
def __init__(self, model_dir): | |
pre_process_list = [{ | |
'DetResizeForTest': { | |
'limit_side_len': 960, | |
'limit_type': "max", | |
} | |
}, { | |
'NormalizeImage': { | |
'std': [0.229, 0.224, 0.225], | |
'mean': [0.485, 0.456, 0.406], | |
'scale': '1./255.', | |
'order': 'hwc' | |
} | |
}, { | |
'ToCHWImage': None | |
}, { | |
'KeepKeys': { | |
'keep_keys': ['image', 'shape'] | |
} | |
}] | |
postprocess_params = {"name": "DBPostProcess", "thresh": 0.3, "box_thresh": 0.5, "max_candidates": 1000, | |
"unclip_ratio": 1.5, "use_dilation": False, "score_mode": "fast", "box_type": "quad"} | |
self.postprocess_op = build_post_process(postprocess_params) | |
self.predictor, self.input_tensor = load_model(model_dir, 'det') | |
img_h, img_w = self.input_tensor.shape[2:] | |
if isinstance(img_h, str) or isinstance(img_w, str): | |
pass | |
elif img_h is not None and img_w is not None and img_h > 0 and img_w > 0: | |
pre_process_list[0] = { | |
'DetResizeForTest': { | |
'image_shape': [img_h, img_w] | |
} | |
} | |
self.preprocess_op = create_operators(pre_process_list) | |
def order_points_clockwise(self, pts): | |
rect = np.zeros((4, 2), dtype="float32") | |
s = pts.sum(axis=1) | |
rect[0] = pts[np.argmin(s)] | |
rect[2] = pts[np.argmax(s)] | |
tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0) | |
diff = np.diff(np.array(tmp), axis=1) | |
rect[1] = tmp[np.argmin(diff)] | |
rect[3] = tmp[np.argmax(diff)] | |
return rect | |
def clip_det_res(self, points, img_height, img_width): | |
for pno in range(points.shape[0]): | |
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1)) | |
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1)) | |
return points | |
def filter_tag_det_res(self, dt_boxes, image_shape): | |
img_height, img_width = image_shape[0:2] | |
dt_boxes_new = [] | |
for box in dt_boxes: | |
if isinstance(box, list): | |
box = np.array(box) | |
box = self.order_points_clockwise(box) | |
box = self.clip_det_res(box, img_height, img_width) | |
rect_width = int(np.linalg.norm(box[0] - box[1])) | |
rect_height = int(np.linalg.norm(box[0] - box[3])) | |
if rect_width <= 3 or rect_height <= 3: | |
continue | |
dt_boxes_new.append(box) | |
dt_boxes = np.array(dt_boxes_new) | |
return dt_boxes | |
def filter_tag_det_res_only_clip(self, dt_boxes, image_shape): | |
img_height, img_width = image_shape[0:2] | |
dt_boxes_new = [] | |
for box in dt_boxes: | |
if isinstance(box, list): | |
box = np.array(box) | |
box = self.clip_det_res(box, img_height, img_width) | |
dt_boxes_new.append(box) | |
dt_boxes = np.array(dt_boxes_new) | |
return dt_boxes | |
def __call__(self, img): | |
ori_im = img.copy() | |
data = {'image': img} | |
st = time.time() | |
data = transform(data, self.preprocess_op) | |
img, shape_list = data | |
if img is None: | |
return None, 0 | |
img = np.expand_dims(img, axis=0) | |
shape_list = np.expand_dims(shape_list, axis=0) | |
img = img.copy() | |
input_dict = {} | |
input_dict[self.input_tensor.name] = img | |
for i in range(100000): | |
try: | |
outputs = self.predictor.run(None, input_dict) | |
break | |
except Exception as e: | |
if i >= 3: | |
raise e | |
time.sleep(5) | |
post_result = self.postprocess_op({"maps": outputs[0]}, shape_list) | |
dt_boxes = post_result[0]['points'] | |
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape) | |
return dt_boxes, time.time() - st | |
class RagFlow(): | |
def __init__(self, model_dir=None): | |
if not model_dir: | |
try: | |
model_dir = os.path.join( | |
get_deepdoc_directory(), | |
"models") | |
self.text_detector = RagFlowTextDetector(model_dir) | |
except Exception as e: | |
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc", | |
local_dir=os.path.join(get_deepdoc_directory(), "models"), | |
local_dir_use_symlinks=False) | |
self.text_detector = RagFlowTextDetector(model_dir) | |
self.drop_score = 0.5 | |
self.crop_image_res_index = 0 | |
def get_rotate_crop_image(self, img, points): | |
''' | |
img_height, img_width = img.shape[0:2] | |
left = int(np.min(points[:, 0])) | |
right = int(np.max(points[:, 0])) | |
top = int(np.min(points[:, 1])) | |
bottom = int(np.max(points[:, 1])) | |
img_crop = img[top:bottom, left:right, :].copy() | |
points[:, 0] = points[:, 0] - left | |
points[:, 1] = points[:, 1] - top | |
''' | |
assert len(points) == 4, "shape of points must be 4*2" | |
img_crop_width = int( | |
max( | |
np.linalg.norm(points[0] - points[1]), | |
np.linalg.norm(points[2] - points[3]))) | |
img_crop_height = int( | |
max( | |
np.linalg.norm(points[0] - points[3]), | |
np.linalg.norm(points[1] - points[2]))) | |
pts_std = np.float32([[0, 0], [img_crop_width, 0], | |
[img_crop_width, img_crop_height], | |
[0, img_crop_height]]) | |
M = cv2.getPerspectiveTransform(points, pts_std) | |
dst_img = cv2.warpPerspective( | |
img, | |
M, (img_crop_width, img_crop_height), | |
borderMode=cv2.BORDER_REPLICATE, | |
flags=cv2.INTER_CUBIC) | |
dst_img_height, dst_img_width = dst_img.shape[0:2] | |
if dst_img_height * 1.0 / dst_img_width >= 1.5: | |
dst_img = np.rot90(dst_img) | |
return dst_img | |
def sorted_boxes(self, dt_boxes): | |
""" | |
Sort text boxes in order from top to bottom, left to right | |
args: | |
dt_boxes(array):detected text boxes with shape [4, 2] | |
return: | |
sorted boxes(array) with shape [4, 2] | |
""" | |
num_boxes = dt_boxes.shape[0] | |
sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0])) | |
_boxes = list(sorted_boxes) | |
for i in range(num_boxes - 1): | |
for j in range(i, -1, -1): | |
if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and \ | |
(_boxes[j + 1][0][0] < _boxes[j][0][0]): | |
tmp = _boxes[j] | |
_boxes[j] = _boxes[j + 1] | |
_boxes[j + 1] = tmp | |
else: | |
break | |
return _boxes | |
def detect(self, img): | |
time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0} | |
if img is None: | |
return None, None, time_dict | |
start = time.time() | |
dt_boxes, elapse = self.text_detector(img) | |
time_dict['det'] = elapse | |
return zip(self.sorted_boxes(dt_boxes), [ | |
("", 0) for _ in range(len(dt_boxes))]) | |
def recognize(self, ori_im, box): | |
img_crop = self.get_rotate_crop_image(ori_im, box) | |
rec_res, elapse = self.text_recognizer([img_crop]) | |
text, score = rec_res[0] | |
if score < self.drop_score: | |
return "" | |
return text | |
def predict(self,img:np.ndarray=None)-> List[List[float]]: | |
""" | |
Return np array of bounding boxes - for each box 4 points of 2 coordinates | |
""" | |
time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0} | |
dt_boxes, elapse = self.text_detector(img) | |
time_dict['det'] = elapse | |
dt_boxes = self.sorted_boxes(dt_boxes) | |
return dt_boxes | |