alps / detectionAndOcrTable2.py
yumikimi381's picture
Upload folder using huggingface_hub
daf0288 verified
from typing import Tuple, List, Sequence, Optional, Union
from torchvision import transforms
from torch import nn, Tensor
from PIL import Image
from pathlib import Path
from bs4 import BeautifulSoup as bs
import numpy as np
import numpy.typing as npt
from numpy import uint8
ImageType = npt.NDArray[uint8]
from transformers import AutoModelForObjectDetection
import torch
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.patches import Patch
from unitable import UnitableFullPredictor
#based on this notebook:https://github.com/NielsRogge/Transformers-Tutorials/blob/master/Table%20Transformer/Inference_with_Table_Transformer_(TATR)_for_parsing_tables.ipynb
class MaxResize(object):
def __init__(self, max_size=800):
self.max_size = max_size
def __call__(self, image):
width, height = image.size
current_max_size = max(width, height)
scale = self.max_size / current_max_size
resized_image = image.resize((int(round(scale*width)), int(round(scale*height))))
return resized_image
def iob(boxA, boxB):
"""
Calculate the Intersection over Bounding Box (IoB) of two bounding boxes.
Parameters:
- boxA: list or tuple with [xmin, ymin, xmax, ymax] of the first box
- boxB: list or tuple with [xmin, ymin, xmax, ymax] of the second box
Returns:
- iob: float, the IoB ratio
"""
# Determine the coordinates of the intersection rectangle
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxA[3], boxB[3])
# Compute the area of intersection rectangle
interWidth = max(0, xB - xA)
interHeight = max(0, yB - yA)
interArea = interWidth * interHeight
# Compute the area of boxB (the second box)
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
# Compute the Intersection over Bounding Box (IoB) ratio
iob = interArea / float(boxBArea)
return iob
class DetectionAndOcrTable2():
#This components can take in entire pdf page as input , scan for tables and return the table in html format
#Uses the full unitable model - different to DetectionAndOcrTable1
def __init__(self):
self.unitableFullPredictor = UnitableFullPredictor()
@staticmethod
def save_detection(detected_lines_images:List[ImageType], prefix = './res/test1/res_'):
i = 0
for img in detected_lines_images:
pilimg = Image.fromarray(img)
pilimg.save(prefix+str(i)+'.png')
i=i+1
@staticmethod
# for output bounding box post-processing
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(-1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
@staticmethod
def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = DetectionAndOcrTable2.box_cxcywh_to_xyxy(out_bbox)
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
return b
@staticmethod
def outputs_to_objects(outputs, img_size, id2label):
m = outputs.logits.softmax(-1).max(-1)
pred_labels = list(m.indices.detach().cpu().numpy())[0]
pred_scores = list(m.values.detach().cpu().numpy())[0]
pred_bboxes = outputs['pred_boxes'].detach().cpu()[0]
pred_bboxes = [elem.tolist() for elem in DetectionAndOcrTable2.rescale_bboxes(pred_bboxes, img_size)]
objects = []
for label, score, bbox in zip(pred_labels, pred_scores, pred_bboxes):
class_label = id2label[int(label)]
if not class_label == 'no object':
objects.append({'label': class_label, 'score': float(score),
'bbox': [float(elem) for elem in bbox]})
return objects
@staticmethod
def visualize_detected_tables(img, det_tables, out_path=None):
plt.imshow(img, interpolation="lanczos")
fig = plt.gcf()
fig.set_size_inches(20, 20)
ax = plt.gca()
for det_table in det_tables:
bbox = det_table['bbox']
if det_table['label'] == 'table':
facecolor = (1, 0, 0.45)
edgecolor = (1, 0, 0.45)
alpha = 0.3
linewidth = 2
hatch='//////'
elif det_table['label'] == 'table rotated':
facecolor = (0.95, 0.6, 0.1)
edgecolor = (0.95, 0.6, 0.1)
alpha = 0.3
linewidth = 2
hatch='//////'
else:
continue
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth,
edgecolor='none',facecolor=facecolor, alpha=0.1)
ax.add_patch(rect)
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth,
edgecolor=edgecolor,facecolor='none',linestyle='-', alpha=alpha)
ax.add_patch(rect)
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=0,
edgecolor=edgecolor,facecolor='none',linestyle='-', hatch=hatch, alpha=0.2)
ax.add_patch(rect)
plt.xticks([], [])
plt.yticks([], [])
legend_elements = [Patch(facecolor=(1, 0, 0.45), edgecolor=(1, 0, 0.45),
label='Table', hatch='//////', alpha=0.3),
Patch(facecolor=(0.95, 0.6, 0.1), edgecolor=(0.95, 0.6, 0.1),
label='Table (rotated)', hatch='//////', alpha=0.3)]
plt.legend(handles=legend_elements, bbox_to_anchor=(0.5, -0.02), loc='upper center', borderaxespad=0,
fontsize=10, ncol=2)
plt.gcf().set_size_inches(10, 10)
plt.axis('off')
if out_path is not None:
plt.savefig(out_path, bbox_inches='tight', dpi=150)
return fig
#For that, the TATR authors employ some padding to make sure the borders of the table are included.
@staticmethod
def objects_to_crops(img, tokens, objects, class_thresholds, padding=10):
"""
Process the bounding boxes produced by the table detection model into
cropped table images and cropped tokens.
"""
table_crops = []
for obj in objects:
# abit unecessary here cause i crop them anywyas
if obj['score'] < class_thresholds[obj['label']]:
print('skipping object with score', obj['score'])
continue
cropped_table = {}
bbox = obj['bbox']
bbox = [bbox[0]-padding, bbox[1]-padding, bbox[2]+padding, bbox[3]+padding]
cropped_img = img.crop(bbox)
# Add padding to the cropped image
padded_width = cropped_img.width + 40
padded_height = cropped_img.height +40
new_img_np = np.full((padded_height, padded_width, 3), fill_value=255, dtype=np.uint8)
y_offset = (padded_height - cropped_img.height) // 2
x_offset = (padded_width - cropped_img.width) // 2
new_img_np[y_offset:y_offset + cropped_img.height, x_offset:x_offset+cropped_img.width] = np.array(cropped_img)
padded_img = Image.fromarray(new_img_np,'RGB')
table_tokens = [token for token in tokens if iob(token['bbox'], bbox) >= 0.5]
for token in table_tokens:
token['bbox'] = [token['bbox'][0]-bbox[0] + padding,
token['bbox'][1]-bbox[1] + padding,
token['bbox'][2]-bbox[0] + padding,
token['bbox'][3]-bbox[1] + padding]
# If table is predicted to be rotated, rotate cropped image and tokens/words:
if obj['label'] == 'table rotated':
padded_img = padded_img.rotate(270, expand=True)
for token in table_tokens:
bbox = token['bbox']
bbox = [padded_img.size[0]-bbox[3]-1,
bbox[0],
padded_img.size[0]-bbox[1]-1,
bbox[2]]
token['bbox'] = bbox
cropped_table['image'] = padded_img
cropped_table['tokens'] = table_tokens
table_crops.append(cropped_table)
return table_crops
def predict(self,image:Image.Image,debugfolder_filename_page_name):
"""
0. Locate the table using Table detection
1. Unitable
"""
# Step 0 : Locate the table using Table detection TODO
#First we load a Table Transformer pre-trained for table detection. We use the "no_timm" version here to load the checkpoint with a Transformers-native backbone.
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection", revision="no_timm")
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
#Preparing the image for the model
detection_transform = transforms.Compose([
MaxResize(800),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
pixel_values = detection_transform(image).unsqueeze(0)
pixel_values = pixel_values.to(device)
# Next, we forward the pixel values through the model.
# The model outputs logits of shape (batch_size, num_queries, num_labels + 1). The +1 is for the "no object" class.
with torch.no_grad():
outputs = model(pixel_values)
# update id2label to include "no object"
id2label = model.config.id2label
id2label[len(model.config.id2label)] = "no object"
#[{'label': 'table', 'score': 0.9999570846557617, 'bbox': [110.24547576904297, 73.31171417236328, 1024.609130859375, 308.7159423828125]}]
objects = DetectionAndOcrTable2.outputs_to_objects(outputs, image.size, id2label)
#Only do these for objects with score greater than 0.8
objects = [obj for obj in objects if obj['score'] > 0.95]
print(objects)
if objects:
fig = DetectionAndOcrTable2.visualize_detected_tables(image, objects,out_path = "./res/table_debug/table_former_detection.jpg")
#Next, we crop the table out of the image. For that, the TATR authors employ some padding to make sure the borders of the table are included.
tokens = []
detection_class_thresholds = {
"table": 0.95,
"table rotated": 0.95,
"no object": 10
}
crop_padding = 10
tables_crops = DetectionAndOcrTable2.objects_to_crops(image, tokens, objects, detection_class_thresholds, padding=crop_padding)
#[{'image': <PIL.Image.Image image mode=RGB size=1392x903 at 0x7F71B02BCB50>, 'tokens': []}]
#print(tables_crops)
#TODO: Handle the case where there are multiple tables
cropped_tables =[]
for i in range (len(tables_crops)):
cropped_table = tables_crops[i]['image'].convert("RGB")
cropped_table.save(debugfolder_filename_page_name +"cropped_table_"+str(i)+".png")
cropped_tables.append(cropped_table)
print("number of cropped tables found: "+str(len(cropped_tables)))
# Step 1: Unitable
#This take PIL Images as input
table_codes = self.unitableFullPredictor.predict(cropped_tables,debugfolder_filename_page_name)
else:
return