Spaces:
Sleeping
Sleeping
File size: 26,112 Bytes
4942755 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 |
import subprocess
import re
from typing import List, Tuple, Optional
import gradio as gr
from datetime import datetime
import os
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "0,1,2,3,4,5,6,7"
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
from PIL import Image, ImageFilter
from sam2.build_sam import build_sam2_video_predictor
from moviepy.editor import ImageSequenceClip
# Description
title = "<center><strong><font size='8'>Efficient Track Anything (EfficientTAM)<font></strong></center>"
description_e = """This is a demo of [Efficient Track Anything (EfficientTAM) Model](https://github.com/yformer/EfficientTAM).
"""
description_p = """# Interactive Video Segmentation
- Built our demo based on [SAM2-Video-Predictor](https://huggingface.co/spaces/fffiloni/SAM2-Video-Predictor). Thanks to Sylvain Filoni.
- Instruction
<ol>
<li> Upload one video or click one example video</li>
<li> Click 'include' point type, select the object to segment and track</li>
<li> Click 'exclude' point type (optional), select the area you want to avoid segmenting and tracking</li>
<li> Click the 'Segment' button, obtain the mask of the first frame </li>
<li> Click the 'coarse' level and the 'Track' button, segment and track the object every 15 frames </li>
<li> Click the corresponding frame to add points on the object for mask refining (optional) </li>
<li> Click the 'fine' level and the 'Track' button, obtain masklet and masked video </li>
<li> Click the 'Reset' button to restart </li>
</ol>
- Github [link](https://github.com/yformer/EfficientTAM)
"""
# examples
examples = [
["examples/videos/cat.mp4"],
["examples/videos/coffee.mp4"],
["examples/videos/car.mp4"],
["examples/videos/chick.mp4"],
["examples/videos/cups.mp4"],
["examples/videos/dog.mp4"],
["examples/videos/goat.mp4"],
["examples/videos/juggle.mp4"],
["examples/videos/street.mp4"],
["examples/videos/yacht.mp4"],
]
default_example = examples[0]
def get_video_fps(video_path):
# Open the video file
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error: Could not open video.")
return None
# Get the FPS of the video
fps = cap.get(cv2.CAP_PROP_FPS)
return fps
def clear_points(image):
# we clean all
return [
image, # first_frame_path
gr.State([]), # tracking_points
gr.State([]), # trackings_input_label
image, # points_map
#gr.State() # stored_inference_state
]
def preprocess_video_in(video_path):
if video_path is None:
return None, gr.State([]), gr.State([]), None, None, None, None, None, None, gr.update(open=True)
# Generate a unique ID based on the current date and time
unique_id = datetime.now().strftime('%Y%m%d%H%M%S')
# Set directory with this ID to store video frames
extracted_frames_output_dir = f'frames_{unique_id}'
# Create the output directory
os.makedirs(extracted_frames_output_dir, exist_ok=True)
### Process video frames ###
# Open the video file
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error: Could not open video.")
return None
# Get the frames per second (FPS) of the video
fps = cap.get(cv2.CAP_PROP_FPS)
# Calculate the number of frames to process (10 seconds of video)
max_frames = int(fps * 10)
frame_number = 0
first_frame = None
while True:
ret, frame = cap.read()
if not ret or frame_number >= max_frames:
break
# Format the frame filename as '00000.jpg'
frame_filename = os.path.join(extracted_frames_output_dir, f'{frame_number:05d}.jpg')
# Save the frame as a JPEG file
cv2.imwrite(frame_filename, frame)
# Store the first frame
if frame_number == 0:
first_frame = frame_filename
frame_number += 1
# Release the video capture object
cap.release()
# scan all the JPEG frame names in this directory
scanned_frames = [
p for p in os.listdir(extracted_frames_output_dir)
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
]
scanned_frames.sort(key=lambda p: int(os.path.splitext(p)[0]))
# print(f"SCANNED_FRAMES: {scanned_frames}")
return [
first_frame, # first_frame_path
gr.State([]), # tracking_points
gr.State([]), # trackings_input_label
first_frame, # input_first_frame_image
first_frame, # points_map
extracted_frames_output_dir, # video_frames_dir
scanned_frames, # scanned_frames
None, # stored_inference_state
None, # stored_frame_names
gr.update(open=False) # video_in_drawer
]
def get_point(point_type, tracking_points, trackings_input_label, input_first_frame_image, evt: gr.SelectData):
if input_first_frame_image is None:
return gr.State([]), gr.State([]), None
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
tracking_points.value.append(evt.index)
print(f"TRACKING POINT: {tracking_points.value}")
if point_type == "include":
trackings_input_label.value.append(1)
elif point_type == "exclude":
trackings_input_label.value.append(0)
print(f"TRACKING INPUT LABEL: {trackings_input_label.value}")
# Open the image and get its dimensions
transparent_background = Image.open(input_first_frame_image).convert('RGBA')
w, h = transparent_background.size
# Define the circle radius as a fraction of the smaller dimension
fraction = 0.02 # You can adjust this value as needed
radius = int(fraction * min(w, h))
# Create a transparent layer to draw on
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
for index, track in enumerate(tracking_points.value):
if trackings_input_label.value[index] == 1:
cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
else:
cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
# Convert the transparent layer back to an image
transparent_layer = Image.fromarray(transparent_layer, 'RGBA')
selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
return tracking_points, trackings_input_label, selected_point_map
DEVICE = 'cuda'
# use bfloat16 for the entire notebook
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
def show_mask(mask, ax, obj_id=None, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
cmap = plt.get_cmap("tab10")
cmap_idx = 0 if obj_id is None else obj_id
color = np.array([*cmap(cmap_idx)[:3], 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.axis('off')
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=200):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
def load_model(checkpoint):
# Load model accordingly to user's choice
if checkpoint == "efficienttam_s":
efficienttam_checkpoint = "./checkpoints/efficienttam_s.pt"
model_cfg = "efficienttam_s.yaml"
return [efficienttam_checkpoint, model_cfg]
elif checkpoint == "efficienttam_ti":
efficienttam_checkpoint = "./checkpoints/efficienttam_ti.pt"
model_cfg = "efficienttam-ti.yaml"
return [efficienttam_checkpoint, model_cfg]
elif checkpoint == "efficienttam_s_512x512":
efficienttam_checkpoint = "./checkpoints/efficienttam_s_512x512.pt"
model_cfg = "efficienttam_s_512x512.yaml"
return [efficienttam_checkpoint, model_cfg]
elif checkpoint == "efficienttam_ti_512x512":
efficienttam_checkpoint = "./checkpoints/efficienttam_ti_512x512.pt"
model_cfg = "efficienttam_ti_512x512.yaml"
return [efficienttam_checkpoint, model_cfg]
elif checkpoint == "efficienttam_s_1":
efficienttam_checkpoint = "./checkpoints/efficienttam_s_1.pt"
model_cfg = "efficienttam_s_1.yaml"
return [efficienttam_checkpoint, model_cfg]
elif checkpoint == "efficienttam_s_2":
efficienttam_checkpoint = "./checkpoints/efficienttam_s_2.pt"
model_cfg = "efficienttam_s_2.yaml"
return [efficienttam_checkpoint, model_cfg]
elif checkpoint == "efficienttam_ti_1":
efficienttam_checkpoint = "./checkpoints/efficienttam_ti_1.pt"
model_cfg = "efficienttam_ti_1.yaml"
return [efficienttam_checkpoint, model_cfg]
elif checkpoint == "efficienttam_ti_2":
efficienttam_checkpoint = "./checkpoints/efficienttam_ti_2.pt"
model_cfg = "efficienttam_ti_2.yaml"
return [efficienttam_checkpoint, model_cfg]
else:
efficienttam_checkpoint = "./checkpoints/demo/efficienttam_s.pt"
model_cfg = "efficienttam_s.yaml"
return [efficienttam_checkpoint, model_cfg]
def get_mask_sam_process(
stored_inference_state,
input_first_frame_image,
checkpoint,
tracking_points,
trackings_input_label,
video_frames_dir, # extracted_frames_output_dir defined in 'preprocess_video_in' function
scanned_frames,
working_frame: str = None, # current frame being added points
available_frames_to_check: List[str] = [],
):
if len(tracking_points.value) == 0:
return gr.update(visible=False), None, gr.State(), None, stored_inference_state, working_frame
# get model and model config paths
print(f"USER CHOSEN CHECKPOINT: {checkpoint}")
sam2_checkpoint, model_cfg = load_model(checkpoint)
print("MODEL LOADED")
# set predictor
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cuda")
print("PREDICTOR READY")
# `video_dir` a directory of JPEG frames with filenames like `<frame_index>.jpg`
# print(f"STATE FRAME OUTPUT DIRECTORY: {video_frames_dir}")
video_dir = video_frames_dir
# scan all the JPEG frame names in this directory
frame_names = scanned_frames
# print(f"STORED INFERENCE STEP: {stored_inference_state}")
if stored_inference_state is None:
# Init SAM2 inference_state
inference_state = predictor.init_state(video_path=video_dir, device="cuda")
print("NEW INFERENCE_STATE INITIATED")
else:
inference_state = stored_inference_state
# segment and track one object
# predictor.reset_state(inference_state) # if any previous tracking, reset
### HANDLING WORKING FRAME
# new_working_frame = None
# Add new point
if working_frame is None:
ann_frame_idx = 0 # the frame index we interact with, 0 if it is the first frame
working_frame = "frame_0.jpg"
else:
# Use a regular expression to find the integer
match = re.search(r'frame_(\d+)', working_frame)
if match:
# Extract the integer from the match
frame_number = int(match.group(1))
ann_frame_idx = frame_number
print(f"NEW_WORKING_FRAME PATH: {working_frame}")
ann_obj_id = 1 # give a unique id to each object we interact with (it can be any integers)
# Let's add a positive click at (x, y) = (210, 350) to get started
points = np.array(tracking_points.value, dtype=np.float32)
# for labels, `1` means positive click and `0` means negative click
labels = np.array(trackings_input_label.value, np.int32)
_, out_obj_ids, out_mask_logits = predictor.add_new_points(
inference_state=inference_state,
frame_idx=ann_frame_idx,
obj_id=ann_obj_id,
points=points,
labels=labels,
)
# Create the plot
plt.figure(figsize=(12, 8))
plt.title(f"frame {ann_frame_idx}")
plt.imshow(Image.open(os.path.join(video_dir, frame_names[ann_frame_idx])))
show_points(points, labels, plt.gca())
show_mask((out_mask_logits[0] > 0.0).cpu().numpy(), plt.gca(), obj_id=out_obj_ids[0])
# Save the plot as a JPG file
first_frame_output_filename = "output_first_frame.jpg"
plt.savefig(first_frame_output_filename, format='jpg')
plt.close()
torch.cuda.empty_cache()
# Assuming available_frames_to_check.value is a list
if working_frame not in available_frames_to_check:
available_frames_to_check.append(working_frame)
print(available_frames_to_check)
return gr.update(visible=True), "output_first_frame.jpg", frame_names, predictor, inference_state, gr.update(choices=available_frames_to_check, value=working_frame, visible=True)
def propagate_to_all(tracking_points, video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, available_frames_to_check, working_frame):
if tracking_points is None or video_in is None or checkpoint is None or stored_inference_state is None:
return gr.update(value=None), gr.update(value=None), gr.update(value=None), available_frames_to_check, gr.update(visible=False)
#### PROPAGATION ####
sam2_checkpoint, model_cfg = load_model(checkpoint)
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cuda")
inference_state = stored_inference_state
frame_names = stored_frame_names
video_dir = video_frames_dir
# Define a directory to save the JPEG images
frames_output_dir = "frames_output_images"
os.makedirs(frames_output_dir, exist_ok=True)
# Initialize a list to store file paths of saved images
jpeg_images = []
# run propagation throughout the video and collect the results in a dict
video_segments = {} # video_segments contains the per-frame segmentation results
print("starting propagate_in_video")
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
# obtain the segmentation results every few frames
if vis_frame_type == "coarse":
vis_frame_stride = 15
elif vis_frame_type == "fine":
vis_frame_stride = 1
plt.close("all")
for out_frame_idx in range(0, len(frame_names), vis_frame_stride):
plt.figure(figsize=(6, 4))
plt.title(f"frame {out_frame_idx}")
plt.imshow(Image.open(os.path.join(video_dir, frame_names[out_frame_idx])))
for out_obj_id, out_mask in video_segments[out_frame_idx].items():
show_mask(out_mask, plt.gca(), obj_id=out_obj_id)
# Define the output filename and save the figure as a JPEG file
output_filename = os.path.join(frames_output_dir, f"frame_{out_frame_idx}.jpg")
plt.savefig(output_filename, format='jpg')
# Close the plot
plt.close()
# Append the file path to the list
jpeg_images.append(output_filename)
if f"frame_{out_frame_idx}.jpg" not in available_frames_to_check:
available_frames_to_check.append(f"frame_{out_frame_idx}.jpg")
torch.cuda.empty_cache()
print(f"JPEG_IMAGES: {jpeg_images}")
if vis_frame_type == "coarse":
return gr.update(value=jpeg_images), gr.update(value=None), gr.update(choices=available_frames_to_check, value=working_frame, visible=True), available_frames_to_check, gr.update(visible=True)
elif vis_frame_type == "fine":
# Create a video clip from the image sequence
original_fps = get_video_fps(video_in)
fps = original_fps # Frames per second
total_frames = len(jpeg_images)
clip = ImageSequenceClip(jpeg_images, fps=fps)
# Write the result to a file
final_vid_output_path = "output_video.mp4"
# Write the result to a file
clip.write_videofile(
final_vid_output_path,
codec='libx264'
)
return gr.update(value=None), gr.update(value=final_vid_output_path), working_frame, available_frames_to_check, gr.update(visible=True)
def update_ui(vis_frame_type):
if vis_frame_type == "coarse":
return gr.update(visible=True), gr.update(visible=False)
elif vis_frame_type == "fine":
return gr.update(visible=False), gr.update(visible=True)
def switch_working_frame(working_frame, scanned_frames, video_frames_dir):
new_working_frame = None
if working_frame == None:
new_working_frame = os.path.join(video_frames_dir, scanned_frames[0])
else:
# Use a regular expression to find the integer
match = re.search(r'frame_(\d+)', working_frame)
if match:
# Extract the integer from the match
frame_number = int(match.group(1))
ann_frame_idx = frame_number
new_working_frame = os.path.join(video_frames_dir, scanned_frames[ann_frame_idx])
return gr.State([]), gr.State([]), new_working_frame, new_working_frame
def reset_propagation(first_frame_path, predictor, stored_inference_state):
predictor.reset_state(stored_inference_state)
# print(f"RESET State: {stored_inference_state} ")
return first_frame_path, gr.State([]), gr.State([]), gr.update(value=None, visible=False), stored_inference_state, None, ["frame_0.jpg"], first_frame_path, "frame_0.jpg", gr.update(visible=False)
with gr.Blocks() as demo:
first_frame_path = gr.State()
tracking_points = gr.State([])
trackings_input_label = gr.State([])
video_frames_dir = gr.State()
scanned_frames = gr.State()
loaded_predictor = gr.State()
stored_inference_state = gr.State()
stored_frame_names = gr.State()
available_frames_to_check = gr.State([])
with gr.Column():
# Title
gr.Markdown(title)
with gr.Row():
with gr.Column():
# Instructions
gr.Markdown(description_p)
# video_exp = gr.Video(label="Input Example", format="mp4", visible=False)
with gr.Accordion("Input Video", open=True) as video_in_drawer:
video_in = gr.Video(label="Input Video", format="mp4")
with gr.Row():
point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include", scale=2)
clear_points_btn = gr.Button("Clear Points", scale=1)
input_first_frame_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False)
points_map = gr.Image(
label="Frame with Point Prompt",
type="filepath",
interactive=False
)
with gr.Row():
checkpoint = gr.Dropdown(label="Checkpoint", choices=["efficienttam_s", "efficienttam_ti", "efficienttam_s_512x512", "efficienttam_ti_512x512", "efficienttam_s_1", "efficienttam_s_2", "efficienttam_ti_1", "efficienttam_ti_2"], value="efficienttam_s")
submit_btn = gr.Button("Segment", size="lg")
with gr.Column():
gr.Markdown("# Try some of the examples below ⬇️")
gr.Examples(
examples=examples,
inputs=[video_in,],
)
gr.Markdown('\n\n\n\n\n\n\n\n\n\n\n')
gr.Markdown('\n\n\n\n\n\n\n\n\n\n\n')
gr.Markdown('\n\n\n\n\n\n\n\n\n\n\n')
with gr.Row():
working_frame = gr.Dropdown(label="Frame ID", choices=[""], value=None, visible=False, allow_custom_value=False, interactive=True)
change_current = gr.Button("change current", visible=False)
output_result = gr.Image(label="Reference Mask")
with gr.Row():
vis_frame_type = gr.Radio(label="Track level", choices=["coarse", "fine"], value="coarse", scale=2)
propagate_btn = gr.Button("Track", scale=1)
reset_prpgt_brn = gr.Button("Reset", visible=False)
output_propagated = gr.Gallery(label="Masklets", columns=4, visible=False)
output_video = gr.Video(visible=False)
# When new video is uploaded
video_in.upload(
fn = preprocess_video_in,
inputs = [video_in],
outputs = [
first_frame_path,
tracking_points, # update Tracking Points in the gr.State([]) object
trackings_input_label, # update Tracking Labels in the gr.State([]) object
input_first_frame_image, # hidden component used as ref when clearing points
points_map, # Image component where we add new tracking points
video_frames_dir, # Array where frames from video_in are deep stored
scanned_frames, # Scanned frames by EfficientTAM
stored_inference_state, # EfficientTAM inference state
stored_frame_names, #
video_in_drawer, # Accordion to hide uploaded video player
],
queue = False
)
video_in.change(
fn = preprocess_video_in,
inputs = [video_in],
outputs = [
first_frame_path,
tracking_points, # update Tracking Points in the gr.State([]) object
trackings_input_label, # update Tracking Labels in the gr.State([]) object
input_first_frame_image, # hidden component used as ref when clearing points
points_map, # Image component where we add new tracking points
video_frames_dir, # Array where frames from video_in are deep stored
scanned_frames, # Scanned frames by EfficientTAM
stored_inference_state, # EfficientTAM inference state
stored_frame_names, #
video_in_drawer, # Accordion to hide uploaded video player
],
queue = False
)
# triggered when we click on image to add new points
points_map.select(
fn = get_point,
inputs = [
point_type, # "include" or "exclude"
tracking_points, # get tracking_points values
trackings_input_label, # get tracking label values
input_first_frame_image, # gr.State() first frame path
],
outputs = [
tracking_points, # updated with new points
trackings_input_label, # updated with corresponding labels
points_map, # updated image with points
],
queue = False
)
# Clear every points clicked and added to the map
clear_points_btn.click(
fn = clear_points,
inputs = input_first_frame_image, # we get the untouched hidden image
outputs = [
first_frame_path,
tracking_points,
trackings_input_label,
points_map,
],
queue=False
)
change_current.click(
fn = switch_working_frame,
inputs = [working_frame, scanned_frames, video_frames_dir],
outputs = [tracking_points, trackings_input_label, input_first_frame_image, points_map],
queue=False
)
submit_btn.click(
fn = get_mask_sam_process,
inputs = [
stored_inference_state,
input_first_frame_image,
checkpoint,
tracking_points,
trackings_input_label,
video_frames_dir,
scanned_frames,
working_frame,
available_frames_to_check,
],
outputs = [
change_current,
output_result,
stored_frame_names,
loaded_predictor,
stored_inference_state,
working_frame,
],
concurrency_limit=10,
queue=False
)
reset_prpgt_brn.click(
fn = reset_propagation,
inputs = [first_frame_path, loaded_predictor, stored_inference_state],
outputs = [points_map, tracking_points, trackings_input_label, output_propagated, stored_inference_state, output_result, available_frames_to_check, input_first_frame_image, working_frame, reset_prpgt_brn],
queue=False
)
propagate_btn.click(
fn = update_ui,
inputs = [vis_frame_type],
outputs = [output_propagated, output_video],
queue=False
).then(
fn = propagate_to_all,
inputs = [tracking_points, video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, available_frames_to_check, working_frame],
outputs = [output_propagated, output_video, working_frame, available_frames_to_check, reset_prpgt_brn],
concurrency_limit=10,
queue=False
)
demo.queue()
demo.launch()
|