File size: 5,657 Bytes
bd9da36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import math
from typing import Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F

from sam2.modeling.sam2_utils import DropPath, LayerNorm2d, get_clones


class MaskDownSampler(nn.Module):
    """
    Progressively downsample a mask by total_stride, each time by stride.
    Note that LayerNorm is applied per *token*, like in ViT.

    With each downsample (by a factor stride**2), channel capacity increases by the same factor.
    In the end, we linearly project to embed_dim channels.
    """

    def __init__(
        self,
        embed_dim=256,
        kernel_size=4,
        stride=4,
        padding=0,
        total_stride=16,
        activation=nn.GELU,
    ):
        super().__init__()
        num_layers = int(math.log2(total_stride) // math.log2(stride))
        assert stride**num_layers == total_stride
        self.encoder = nn.Sequential()
        mask_in_chans, mask_out_chans = 1, 1
        for _ in range(num_layers):
            mask_out_chans = mask_in_chans * (stride**2)
            self.encoder.append(
                nn.Conv2d(
                    mask_in_chans,
                    mask_out_chans,
                    kernel_size=kernel_size,
                    stride=stride,
                    padding=padding,
                )
            )
            self.encoder.append(LayerNorm2d(mask_out_chans))
            self.encoder.append(activation())
            mask_in_chans = mask_out_chans

        self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1))

    def forward(self, x):
        return self.encoder(x)


# Lightly adapted from ConvNext (https://github.com/facebookresearch/ConvNeXt)
class CXBlock(nn.Module):
    r"""ConvNeXt Block. There are two equivalent implementations:
    (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
    (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
    We use (2) as we find it slightly faster in PyTorch

    Args:
        dim (int): Number of input channels.
        drop_path (float): Stochastic depth rate. Default: 0.0
        layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
    """

    def __init__(
        self,
        dim,
        kernel_size=7,
        padding=3,
        drop_path=0.0,
        layer_scale_init_value=1e-6,
        use_dwconv=True,
    ):
        super().__init__()
        self.dwconv = nn.Conv2d(
            dim,
            dim,
            kernel_size=kernel_size,
            padding=padding,
            groups=dim if use_dwconv else 1,
        )  # depthwise conv
        self.norm = LayerNorm2d(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(
            dim, 4 * dim
        )  # pointwise/1x1 convs, implemented with linear layers
        self.act = nn.GELU()
        self.pwconv2 = nn.Linear(4 * dim, dim)
        self.gamma = (
            nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
            if layer_scale_init_value > 0
            else None
        )
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

    def forward(self, x):
        input = x
        x = self.dwconv(x)
        x = self.norm(x)
        x = x.permute(0, 2, 3, 1)  # (N, C, H, W) -> (N, H, W, C)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.pwconv2(x)
        if self.gamma is not None:
            x = self.gamma * x
        x = x.permute(0, 3, 1, 2)  # (N, H, W, C) -> (N, C, H, W)

        x = input + self.drop_path(x)
        return x


class Fuser(nn.Module):
    def __init__(self, layer, num_layers, dim=None, input_projection=False):
        super().__init__()
        self.proj = nn.Identity()
        self.layers = get_clones(layer, num_layers)

        if input_projection:
            assert dim is not None
            self.proj = nn.Conv2d(dim, dim, kernel_size=1)

    def forward(self, x):
        # normally x: (N, C, H, W)
        x = self.proj(x)
        for layer in self.layers:
            x = layer(x)
        return x


class MemoryEncoder(nn.Module):
    def __init__(
        self,
        out_dim,
        mask_downsampler,
        fuser,
        position_encoding,
        in_dim=256,  # in_dim of pix_feats
    ):
        super().__init__()

        self.mask_downsampler = mask_downsampler

        self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1)
        self.fuser = fuser
        self.position_encoding = position_encoding
        self.out_proj = nn.Identity()
        if out_dim != in_dim:
            self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1)

    def forward(
        self,
        pix_feat: torch.Tensor,
        masks: torch.Tensor,
        skip_mask_sigmoid: bool = False,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        ## Process masks
        # sigmoid, so that less domain shift from gt masks which are bool
        if not skip_mask_sigmoid:
            masks = F.sigmoid(masks)
        masks = self.mask_downsampler(masks)

        ## Fuse pix_feats and downsampled masks
        # in case the visual features are on CPU, cast them to CUDA
        pix_feat = pix_feat.to(masks.device)

        x = self.pix_feat_proj(pix_feat)
        x = x + masks
        x = self.fuser(x)
        x = self.out_proj(x)

        pos = self.position_encoding(x).to(x.dtype)

        return {"vision_features": x, "vision_pos_enc": [pos]}