Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,186 Bytes
bd9da36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Union
from functools import partial
from itertools import repeat
import collections.abc
# From PyTorch internals
def _ntuple(n):
def parse(x):
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
return tuple(x)
return tuple(repeat(x, n))
return parse
to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
to_3tuple = _ntuple(3)
to_4tuple = _ntuple(4)
to_ntuple = _ntuple
def make_divisible(v, divisor=8, min_value=None, round_limit=.9):
min_value = min_value or divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < round_limit * v:
new_v += divisor
return new_v
def extend_tuple(x, n):
# pads a tuple to specified n by padding with last value
if not isinstance(x, (tuple, list)):
x = (x,)
else:
x = tuple(x)
pad_n = n - len(x)
if pad_n <= 0:
return x[:n]
return x + (x[-1],) * pad_n
def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num):
"""
Select up to `max_cond_frame_num` conditioning frames from `cond_frame_outputs`
that are temporally closest to the current frame at `frame_idx`. Here, we take
- a) the closest conditioning frame before `frame_idx` (if any);
- b) the closest conditioning frame after `frame_idx` (if any);
- c) any other temporally closest conditioning frames until reaching a total
of `max_cond_frame_num` conditioning frames.
Outputs:
- selected_outputs: selected items (keys & values) from `cond_frame_outputs`.
- unselected_outputs: items (keys & values) not selected in `cond_frame_outputs`.
"""
if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num:
selected_outputs = cond_frame_outputs
unselected_outputs = {}
else:
assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames"
selected_outputs = {}
# the closest conditioning frame before `frame_idx` (if any)
idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None)
if idx_before is not None:
selected_outputs[idx_before] = cond_frame_outputs[idx_before]
# the closest conditioning frame after `frame_idx` (if any)
idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None)
if idx_after is not None:
selected_outputs[idx_after] = cond_frame_outputs[idx_after]
# add other temporally closest conditioning frames until reaching a total
# of `max_cond_frame_num` conditioning frames.
num_remain = max_cond_frame_num - len(selected_outputs)
inds_remain = sorted(
(t for t in cond_frame_outputs if t not in selected_outputs),
key=lambda x: abs(x - frame_idx),
)[:num_remain]
selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain)
unselected_outputs = {
t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs
}
return selected_outputs, unselected_outputs
def get_1d_sine_pe(pos_inds, dim, temperature=10000):
"""
Get 1D sine positional embedding as in the original Transformer paper.
"""
pe_dim = dim // 2
dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device)
dim_t = temperature ** (2 * (dim_t // 2) / pe_dim)
pos_embed = pos_inds.unsqueeze(-1) / dim_t
pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1)
return pos_embed
def get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == "relu":
return F.relu
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
def get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
class DropPath(nn.Module):
# adapted from https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/drop.py
def __init__(self, drop_prob=0.0, scale_by_keep=True):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
self.scale_by_keep = scale_by_keep
def forward(self, x):
if self.drop_prob == 0.0 or not self.training:
return x
keep_prob = 1 - self.drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
if keep_prob > 0.0 and self.scale_by_keep:
random_tensor.div_(keep_prob)
return x * random_tensor
# Lightly adapted from
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
class MLP(nn.Module):
def __init__(
self,
input_dim: int,
hidden_dim: int,
output_dim: int,
num_layers: int,
activation: nn.Module = nn.ReLU,
sigmoid_output: bool = False,
) -> None:
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
)
self.sigmoid_output = sigmoid_output
self.act = activation()
def forward(self, x):
for i, layer in enumerate(self.layers):
x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x)
if self.sigmoid_output:
x = F.sigmoid(x)
return x
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
class LayerNorm2d(nn.Module):
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class LayerScale(nn.Module):
def __init__(
self,
dim: int,
init_values: Union[float, torch.Tensor] = 1e-5,
inplace: bool = False,
) -> None:
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|