Spaces:
Running
on
Zero
Running
on
Zero
from typing import Optional | |
import numpy as np | |
from PIL import Image | |
def show_masks( | |
image: np.ndarray, | |
masks: np.ndarray, | |
scores: Optional[np.ndarray], | |
alpha: Optional[float] = 0.5, | |
display_image: Optional[bool] = False, | |
only_best: Optional[bool] = True, | |
autogenerated_mask: Optional[bool] = False, | |
) -> Image.Image: | |
if scores is not None: | |
# sort masks by their scores | |
sorted_ind = np.argsort(scores)[::-1] | |
masks = masks[sorted_ind] | |
if autogenerated_mask: | |
masks = sorted(masks, key=(lambda x: x["area"]), reverse=True) | |
else: | |
# get mask dimensions | |
h, w = masks.shape[-2:] | |
if display_image: | |
output_image = Image.fromarray(image) | |
else: | |
# create a new blank image to superimpose masks | |
if autogenerated_mask: | |
output_image = Image.new( | |
mode="RGBA", | |
size=( | |
masks[0]["segmentation"].shape[0], | |
masks[0]["segmentation"].shape[1], | |
), | |
color=(0, 0, 0), | |
) | |
else: | |
output_image = Image.new(mode="RGBA", size=(w, h), color=(0, 0, 0)) | |
for i, mask in enumerate(masks): | |
if not autogenerated_mask: | |
if mask.ndim > 2: # type: ignore | |
mask = mask.squeeze() # type: ignore | |
else: | |
mask = mask["segmentation"] | |
# Generate a random color with specified alpha value | |
color = np.concatenate( | |
(np.random.randint(0, 256, size=3), [int(alpha * 255)]), axis=0 | |
) | |
# Create an RGBA image for the mask | |
mask_image = Image.fromarray((mask * 255).astype(np.uint8)).convert("L") | |
mask_colored = Image.new("RGBA", mask_image.size, tuple(color)) | |
mask_image = Image.composite( | |
mask_colored, Image.new("RGBA", mask_image.size), mask_image | |
) | |
# Overlay mask on the output image | |
output_image = Image.alpha_composite(output_image, mask_image) | |
# Exit if specified to only display the best mask | |
if only_best: | |
break | |
return output_image | |