Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import math | |
from typing import Tuple | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from sam2.modeling.sam2_utils import DropPath, LayerNorm2d, get_clones | |
class MaskDownSampler(nn.Module): | |
""" | |
Progressively downsample a mask by total_stride, each time by stride. | |
Note that LayerNorm is applied per *token*, like in ViT. | |
With each downsample (by a factor stride**2), channel capacity increases by the same factor. | |
In the end, we linearly project to embed_dim channels. | |
""" | |
def __init__( | |
self, | |
embed_dim=256, | |
kernel_size=4, | |
stride=4, | |
padding=0, | |
total_stride=16, | |
activation=nn.GELU, | |
): | |
super().__init__() | |
num_layers = int(math.log2(total_stride) // math.log2(stride)) | |
assert stride**num_layers == total_stride | |
self.encoder = nn.Sequential() | |
mask_in_chans, mask_out_chans = 1, 1 | |
for _ in range(num_layers): | |
mask_out_chans = mask_in_chans * (stride**2) | |
self.encoder.append( | |
nn.Conv2d( | |
mask_in_chans, | |
mask_out_chans, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
) | |
) | |
self.encoder.append(LayerNorm2d(mask_out_chans)) | |
self.encoder.append(activation()) | |
mask_in_chans = mask_out_chans | |
self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1)) | |
def forward(self, x): | |
return self.encoder(x) | |
# Lightly adapted from ConvNext (https://github.com/facebookresearch/ConvNeXt) | |
class CXBlock(nn.Module): | |
r"""ConvNeXt Block. There are two equivalent implementations: | |
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) | |
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back | |
We use (2) as we find it slightly faster in PyTorch | |
Args: | |
dim (int): Number of input channels. | |
drop_path (float): Stochastic depth rate. Default: 0.0 | |
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. | |
""" | |
def __init__( | |
self, | |
dim, | |
kernel_size=7, | |
padding=3, | |
drop_path=0.0, | |
layer_scale_init_value=1e-6, | |
use_dwconv=True, | |
): | |
super().__init__() | |
self.dwconv = nn.Conv2d( | |
dim, | |
dim, | |
kernel_size=kernel_size, | |
padding=padding, | |
groups=dim if use_dwconv else 1, | |
) # depthwise conv | |
self.norm = LayerNorm2d(dim, eps=1e-6) | |
self.pwconv1 = nn.Linear( | |
dim, 4 * dim | |
) # pointwise/1x1 convs, implemented with linear layers | |
self.act = nn.GELU() | |
self.pwconv2 = nn.Linear(4 * dim, dim) | |
self.gamma = ( | |
nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) | |
if layer_scale_init_value > 0 | |
else None | |
) | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
def forward(self, x): | |
input = x | |
x = self.dwconv(x) | |
x = self.norm(x) | |
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) | |
x = self.pwconv1(x) | |
x = self.act(x) | |
x = self.pwconv2(x) | |
if self.gamma is not None: | |
x = self.gamma * x | |
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) | |
x = input + self.drop_path(x) | |
return x | |
class Fuser(nn.Module): | |
def __init__(self, layer, num_layers, dim=None, input_projection=False): | |
super().__init__() | |
self.proj = nn.Identity() | |
self.layers = get_clones(layer, num_layers) | |
if input_projection: | |
assert dim is not None | |
self.proj = nn.Conv2d(dim, dim, kernel_size=1) | |
def forward(self, x): | |
# normally x: (N, C, H, W) | |
x = self.proj(x) | |
for layer in self.layers: | |
x = layer(x) | |
return x | |
class MemoryEncoder(nn.Module): | |
def __init__( | |
self, | |
out_dim, | |
mask_downsampler, | |
fuser, | |
position_encoding, | |
in_dim=256, # in_dim of pix_feats | |
): | |
super().__init__() | |
self.mask_downsampler = mask_downsampler | |
self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1) | |
self.fuser = fuser | |
self.position_encoding = position_encoding | |
self.out_proj = nn.Identity() | |
if out_dim != in_dim: | |
self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1) | |
def forward( | |
self, | |
pix_feat: torch.Tensor, | |
masks: torch.Tensor, | |
skip_mask_sigmoid: bool = False, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
## Process masks | |
# sigmoid, so that less domain shift from gt masks which are bool | |
if not skip_mask_sigmoid: | |
masks = F.sigmoid(masks) | |
masks = self.mask_downsampler(masks) | |
## Fuse pix_feats and downsampled masks | |
# in case the visual features are on CPU, cast them to CUDA | |
pix_feat = pix_feat.to(masks.device) | |
x = self.pix_feat_proj(pix_feat) | |
x = x + masks | |
x = self.fuser(x) | |
x = self.out_proj(x) | |
pos = self.position_encoding(x).to(x.dtype) | |
return {"vision_features": x, "vision_pos_enc": [pos]} | |