Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import copy | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from typing import Union | |
from functools import partial | |
from itertools import repeat | |
import collections.abc | |
# From PyTorch internals | |
def _ntuple(n): | |
def parse(x): | |
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str): | |
return tuple(x) | |
return tuple(repeat(x, n)) | |
return parse | |
to_1tuple = _ntuple(1) | |
to_2tuple = _ntuple(2) | |
to_3tuple = _ntuple(3) | |
to_4tuple = _ntuple(4) | |
to_ntuple = _ntuple | |
def make_divisible(v, divisor=8, min_value=None, round_limit=.9): | |
min_value = min_value or divisor | |
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) | |
# Make sure that round down does not go down by more than 10%. | |
if new_v < round_limit * v: | |
new_v += divisor | |
return new_v | |
def extend_tuple(x, n): | |
# pads a tuple to specified n by padding with last value | |
if not isinstance(x, (tuple, list)): | |
x = (x,) | |
else: | |
x = tuple(x) | |
pad_n = n - len(x) | |
if pad_n <= 0: | |
return x[:n] | |
return x + (x[-1],) * pad_n | |
def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num): | |
""" | |
Select up to `max_cond_frame_num` conditioning frames from `cond_frame_outputs` | |
that are temporally closest to the current frame at `frame_idx`. Here, we take | |
- a) the closest conditioning frame before `frame_idx` (if any); | |
- b) the closest conditioning frame after `frame_idx` (if any); | |
- c) any other temporally closest conditioning frames until reaching a total | |
of `max_cond_frame_num` conditioning frames. | |
Outputs: | |
- selected_outputs: selected items (keys & values) from `cond_frame_outputs`. | |
- unselected_outputs: items (keys & values) not selected in `cond_frame_outputs`. | |
""" | |
if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num: | |
selected_outputs = cond_frame_outputs | |
unselected_outputs = {} | |
else: | |
assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames" | |
selected_outputs = {} | |
# the closest conditioning frame before `frame_idx` (if any) | |
idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None) | |
if idx_before is not None: | |
selected_outputs[idx_before] = cond_frame_outputs[idx_before] | |
# the closest conditioning frame after `frame_idx` (if any) | |
idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None) | |
if idx_after is not None: | |
selected_outputs[idx_after] = cond_frame_outputs[idx_after] | |
# add other temporally closest conditioning frames until reaching a total | |
# of `max_cond_frame_num` conditioning frames. | |
num_remain = max_cond_frame_num - len(selected_outputs) | |
inds_remain = sorted( | |
(t for t in cond_frame_outputs if t not in selected_outputs), | |
key=lambda x: abs(x - frame_idx), | |
)[:num_remain] | |
selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain) | |
unselected_outputs = { | |
t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs | |
} | |
return selected_outputs, unselected_outputs | |
def get_1d_sine_pe(pos_inds, dim, temperature=10000): | |
""" | |
Get 1D sine positional embedding as in the original Transformer paper. | |
""" | |
pe_dim = dim // 2 | |
dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device) | |
dim_t = temperature ** (2 * (dim_t // 2) / pe_dim) | |
pos_embed = pos_inds.unsqueeze(-1) / dim_t | |
pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1) | |
return pos_embed | |
def get_activation_fn(activation): | |
"""Return an activation function given a string""" | |
if activation == "relu": | |
return F.relu | |
if activation == "gelu": | |
return F.gelu | |
if activation == "glu": | |
return F.glu | |
raise RuntimeError(f"activation should be relu/gelu, not {activation}.") | |
def get_clones(module, N): | |
return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) | |
class DropPath(nn.Module): | |
# adapted from https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/drop.py | |
def __init__(self, drop_prob=0.0, scale_by_keep=True): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
self.scale_by_keep = scale_by_keep | |
def forward(self, x): | |
if self.drop_prob == 0.0 or not self.training: | |
return x | |
keep_prob = 1 - self.drop_prob | |
shape = (x.shape[0],) + (1,) * (x.ndim - 1) | |
random_tensor = x.new_empty(shape).bernoulli_(keep_prob) | |
if keep_prob > 0.0 and self.scale_by_keep: | |
random_tensor.div_(keep_prob) | |
return x * random_tensor | |
# Lightly adapted from | |
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa | |
class MLP(nn.Module): | |
def __init__( | |
self, | |
input_dim: int, | |
hidden_dim: int, | |
output_dim: int, | |
num_layers: int, | |
activation: nn.Module = nn.ReLU, | |
sigmoid_output: bool = False, | |
) -> None: | |
super().__init__() | |
self.num_layers = num_layers | |
h = [hidden_dim] * (num_layers - 1) | |
self.layers = nn.ModuleList( | |
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) | |
) | |
self.sigmoid_output = sigmoid_output | |
self.act = activation() | |
def forward(self, x): | |
for i, layer in enumerate(self.layers): | |
x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x) | |
if self.sigmoid_output: | |
x = F.sigmoid(x) | |
return x | |
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa | |
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa | |
class LayerNorm2d(nn.Module): | |
def __init__(self, num_channels: int, eps: float = 1e-6) -> None: | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(num_channels)) | |
self.bias = nn.Parameter(torch.zeros(num_channels)) | |
self.eps = eps | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
u = x.mean(1, keepdim=True) | |
s = (x - u).pow(2).mean(1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.eps) | |
x = self.weight[:, None, None] * x + self.bias[:, None, None] | |
return x | |
class LayerScale(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
init_values: Union[float, torch.Tensor] = 1e-5, | |
inplace: bool = False, | |
) -> None: | |
super().__init__() | |
self.inplace = inplace | |
self.gamma = nn.Parameter(init_values * torch.ones(dim)) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return x.mul_(self.gamma) if self.inplace else x * self.gamma | |