File size: 2,934 Bytes
d41c1a4 e2334e5 d41c1a4 e2334e5 8e253e0 d41c1a4 a824dd6 d41c1a4 665125d d41c1a4 b28d750 d41c1a4 ec0d8fb d41c1a4 665125d d41c1a4 ec0d8fb d41c1a4 ec0d8fb 6adf21e 4fbf54b d41c1a4 b27d944 d41c1a4 b27d944 d41c1a4 2f7ceb6 d41c1a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
# -*- coding: utf-8 -*-
"""app.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/16MxXQeF3O0htL9eQ61aa6ZxnApGg9TKN
"""
import gradio as gr
import numpy as np
import torch
from transformers import pipeline, VitsModel, VitsTokenizer, FSMTForConditionalGeneration, FSMTTokenizer
device = "cuda:0" if torch.cuda.is_available() else "cpu"
#eng audio to text transformation
asr_pipe = pipeline("automatic-speech-recognition", model="asapp/sew-d-tiny-100k-ft-ls100h", device=device)
#eng text to rus text translation
translation_pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru")
#rus text to rus speech transformation
vits_model = VitsModel.from_pretrained("facebook/mms-tts-rus")
vits_tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-rus")
def transform_audio_to_speech_en(audio):
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
return outputs["text"]
def translator(text):
translated_text = translation_pipe(text)
return translated_text[0]['translation_text']
def transform_audio_to_speech_ru(translated_text):
translated_text = translator(translated_text)
inputs = vits_tokenizer(translated_text, return_tensors="pt")
with torch.no_grad():
speech = vits_model(**inputs).waveform
return speech.cpu()
def speech_to_speech_translation(audio):
translated_text = transform_audio_to_speech_en(audio)
synthesised_speech = transform_audio_to_speech_ru(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return 16000, synthesised_speech[0]
title = "Cascaded STST"
description = """
В приложении используется модель SEW-D-tiny(https://huggingface.co/asapp/sew-d-tiny-100k-ft-ls100h),
распознающая английскую речь и преобразующая ее в строку. Затем с помощью модели Helsinki-NLP/opus-mt-en-ru(https://huggingface.co/Helsinki-NLP/opus-mt-en-ru) текст
переводится на русский язык и преобразуется в русскую речь с помощью модели facebook/mms-tts-rus(https://huggingface.co/facebook/mms-tts-rus).
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
examples=[["./personal_example.wav"]],
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
demo.launch() |