|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Configuration base class and utilities.""" |
|
|
|
|
|
import copy |
|
import json |
|
import logging |
|
import os |
|
from typing import Dict, Tuple |
|
|
|
from .file_utils import CONFIG_NAME, cached_path, hf_bucket_url, is_remote_url |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class PretrainedConfig(object): |
|
r""" Base class for all configuration classes. |
|
Handles a few parameters common to all models' configurations as well as methods for loading/downloading/saving configurations. |
|
|
|
Note: |
|
A configuration file can be loaded and saved to disk. Loading the configuration file and using this file to initialize a model does **not** load the model weights. |
|
It only affects the model's configuration. |
|
|
|
Class attributes (overridden by derived classes): |
|
- ``model_type``: a string that identifies the model type, that we serialize into the JSON file, and that we use to recreate the correct object in :class:`~transformers.AutoConfig`. |
|
|
|
Args: |
|
finetuning_task (:obj:`string` or :obj:`None`, `optional`, defaults to :obj:`None`): |
|
Name of the task used to fine-tune the model. This can be used when converting from an original (TensorFlow or PyTorch) checkpoint. |
|
num_labels (:obj:`int`, `optional`, defaults to `2`): |
|
Number of classes to use when the model is a classification model (sequences/tokens) |
|
output_hidden_states (:obj:`bool`, `optional`, defaults to :obj:`False`): |
|
Should the model returns all hidden-states. |
|
output_attentions (:obj:`bool`, `optional`, defaults to :obj:`False`): |
|
Should the model returns all attentions. |
|
torchscript (:obj:`bool`, `optional`, defaults to :obj:`False`): |
|
Is the model used with Torchscript (for PyTorch models). |
|
""" |
|
model_type: str = "" |
|
|
|
def __init__(self, **kwargs): |
|
|
|
self.output_hidden_states = kwargs.pop("output_hidden_states", False) |
|
self.output_attentions = kwargs.pop("output_attentions", False) |
|
self.use_cache = kwargs.pop("use_cache", True) |
|
self.torchscript = kwargs.pop("torchscript", False) |
|
self.use_bfloat16 = kwargs.pop("use_bfloat16", False) |
|
self.pruned_heads = kwargs.pop("pruned_heads", {}) |
|
|
|
|
|
self.is_encoder_decoder = kwargs.pop("is_encoder_decoder", False) |
|
self.is_decoder = kwargs.pop("is_decoder", False) |
|
|
|
|
|
self.max_length = kwargs.pop("max_length", 20) |
|
self.min_length = kwargs.pop("min_length", 0) |
|
self.do_sample = kwargs.pop("do_sample", False) |
|
self.early_stopping = kwargs.pop("early_stopping", False) |
|
self.num_beams = kwargs.pop("num_beams", 1) |
|
self.temperature = kwargs.pop("temperature", 1.0) |
|
self.top_k = kwargs.pop("top_k", 50) |
|
self.top_p = kwargs.pop("top_p", 1.0) |
|
self.repetition_penalty = kwargs.pop("repetition_penalty", 1.0) |
|
self.length_penalty = kwargs.pop("length_penalty", 1.0) |
|
self.no_repeat_ngram_size = kwargs.pop("no_repeat_ngram_size", 0) |
|
self.bad_words_ids = kwargs.pop("bad_words_ids", None) |
|
self.num_return_sequences = kwargs.pop("num_return_sequences", 1) |
|
|
|
|
|
self.architectures = kwargs.pop("architectures", None) |
|
self.finetuning_task = kwargs.pop("finetuning_task", None) |
|
self.id2label = kwargs.pop("id2label", None) |
|
self.label2id = kwargs.pop("label2id", None) |
|
if self.id2label is not None: |
|
kwargs.pop("num_labels", None) |
|
self.id2label = dict((int(key), value) for key, value in self.id2label.items()) |
|
|
|
else: |
|
self.num_labels = kwargs.pop("num_labels", 2) |
|
|
|
|
|
self.prefix = kwargs.pop("prefix", None) |
|
self.bos_token_id = kwargs.pop("bos_token_id", None) |
|
self.pad_token_id = kwargs.pop("pad_token_id", None) |
|
self.eos_token_id = kwargs.pop("eos_token_id", None) |
|
self.decoder_start_token_id = kwargs.pop("decoder_start_token_id", None) |
|
|
|
|
|
self.task_specific_params = kwargs.pop("task_specific_params", None) |
|
|
|
|
|
self.xla_device = kwargs.pop("xla_device", None) |
|
|
|
|
|
for key, value in kwargs.items(): |
|
try: |
|
setattr(self, key, value) |
|
except AttributeError as err: |
|
logger.error("Can't set {} with value {} for {}".format(key, value, self)) |
|
raise err |
|
|
|
@property |
|
def num_labels(self): |
|
return len(self.id2label) |
|
|
|
@num_labels.setter |
|
def num_labels(self, num_labels): |
|
self.id2label = {i: "LABEL_{}".format(i) for i in range(num_labels)} |
|
self.label2id = dict(zip(self.id2label.values(), self.id2label.keys())) |
|
|
|
def save_pretrained(self, save_directory): |
|
""" |
|
Save a configuration object to the directory `save_directory`, so that it |
|
can be re-loaded using the :func:`~transformers.PretrainedConfig.from_pretrained` class method. |
|
|
|
Args: |
|
save_directory (:obj:`string`): |
|
Directory where the configuration JSON file will be saved. |
|
""" |
|
if os.path.isfile(save_directory): |
|
raise AssertionError("Provided path ({}) should be a directory, not a file".format(save_directory)) |
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
output_config_file = os.path.join(save_directory, CONFIG_NAME) |
|
|
|
self.to_json_file(output_config_file, use_diff=True) |
|
logger.info("Configuration saved in {}".format(output_config_file)) |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs) -> "PretrainedConfig": |
|
r""" |
|
|
|
Instantiate a :class:`~transformers.PretrainedConfig` (or a derived class) from a pre-trained model configuration. |
|
|
|
Args: |
|
pretrained_model_name_or_path (:obj:`string`): |
|
either: |
|
- a string with the `shortcut name` of a pre-trained model configuration to load from cache or |
|
download, e.g.: ``bert-base-uncased``. |
|
- a string with the `identifier name` of a pre-trained model configuration that was user-uploaded to |
|
our S3, e.g.: ``dbmdz/bert-base-german-cased``. |
|
- a path to a `directory` containing a configuration file saved using the |
|
:func:`~transformers.PretrainedConfig.save_pretrained` method, e.g.: ``./my_model_directory/``. |
|
- a path or url to a saved configuration JSON `file`, e.g.: |
|
``./my_model_directory/configuration.json``. |
|
cache_dir (:obj:`string`, `optional`): |
|
Path to a directory in which a downloaded pre-trained model |
|
configuration should be cached if the standard cache should not be used. |
|
kwargs (:obj:`Dict[str, any]`, `optional`): |
|
The values in kwargs of any keys which are configuration attributes will be used to override the loaded |
|
values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is |
|
controlled by the `return_unused_kwargs` keyword parameter. |
|
force_download (:obj:`bool`, `optional`, defaults to :obj:`False`): |
|
Force to (re-)download the model weights and configuration files and override the cached versions if they exist. |
|
resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`): |
|
Do not delete incompletely recieved file. Attempt to resume the download if such a file exists. |
|
proxies (:obj:`Dict`, `optional`): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g.: |
|
:obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` |
|
The proxies are used on each request. |
|
return_unused_kwargs: (`optional`) bool: |
|
If False, then this function returns just the final configuration object. |
|
If True, then this functions returns a :obj:`Tuple(config, unused_kwargs)` where `unused_kwargs` is a |
|
dictionary consisting of the key/value pairs whose keys are not configuration attributes: ie the part |
|
of kwargs which has not been used to update `config` and is otherwise ignored. |
|
|
|
Returns: |
|
:class:`PretrainedConfig`: An instance of a configuration object |
|
|
|
Examples:: |
|
|
|
# We can't instantiate directly the base class `PretrainedConfig` so let's show the examples on a |
|
# derived class: BertConfig |
|
config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache. |
|
config = BertConfig.from_pretrained('./test/saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')` |
|
config = BertConfig.from_pretrained('./test/saved_model/my_configuration.json') |
|
config = BertConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False) |
|
assert config.output_attention == True |
|
config, unused_kwargs = BertConfig.from_pretrained('bert-base-uncased', output_attention=True, |
|
foo=False, return_unused_kwargs=True) |
|
assert config.output_attention == True |
|
assert unused_kwargs == {'foo': False} |
|
|
|
""" |
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
@classmethod |
|
def get_config_dict(cls, pretrained_model_name_or_path: str, **kwargs) -> Tuple[Dict, Dict]: |
|
""" |
|
From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used |
|
for instantiating a Config using `from_dict`. |
|
|
|
Parameters: |
|
pretrained_model_name_or_path (:obj:`string`): |
|
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters. |
|
|
|
Returns: |
|
:obj:`Tuple[Dict, Dict]`: The dictionary that will be used to instantiate the configuration object. |
|
|
|
""" |
|
cache_dir = kwargs.pop("cache_dir", None) |
|
force_download = kwargs.pop("force_download", False) |
|
resume_download = kwargs.pop("resume_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
local_files_only = kwargs.pop("local_files_only", False) |
|
|
|
if os.path.isdir(pretrained_model_name_or_path): |
|
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME) |
|
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path): |
|
config_file = pretrained_model_name_or_path |
|
else: |
|
config_file = hf_bucket_url(pretrained_model_name_or_path, filename=CONFIG_NAME, use_cdn=False) |
|
|
|
try: |
|
|
|
resolved_config_file = cached_path( |
|
config_file, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
proxies=proxies, |
|
resume_download=resume_download, |
|
local_files_only=local_files_only, |
|
) |
|
|
|
if resolved_config_file is None: |
|
raise EnvironmentError |
|
config_dict = cls._dict_from_json_file(resolved_config_file) |
|
|
|
except EnvironmentError: |
|
msg = ( |
|
f"Can't load config for '{pretrained_model_name_or_path}'. Make sure that:\n\n" |
|
f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n" |
|
f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a {CONFIG_NAME} file\n\n" |
|
) |
|
raise EnvironmentError(msg) |
|
|
|
except json.JSONDecodeError: |
|
msg = ( |
|
"Couldn't reach server at '{}' to download configuration file or " |
|
"configuration file is not a valid JSON file. " |
|
"Please check network or file content here: {}.".format(config_file, resolved_config_file) |
|
) |
|
raise EnvironmentError(msg) |
|
|
|
if resolved_config_file == config_file: |
|
logger.info("loading configuration file {}".format(config_file)) |
|
else: |
|
logger.info("loading configuration file {} from cache at {}".format(config_file, resolved_config_file)) |
|
|
|
return config_dict, kwargs |
|
|
|
@classmethod |
|
def from_dict(cls, config_dict: Dict, **kwargs) -> "PretrainedConfig": |
|
""" |
|
Constructs a `Config` from a Python dictionary of parameters. |
|
|
|
Args: |
|
config_dict (:obj:`Dict[str, any]`): |
|
Dictionary that will be used to instantiate the configuration object. Such a dictionary can be retrieved |
|
from a pre-trained checkpoint by leveraging the :func:`~transformers.PretrainedConfig.get_config_dict` |
|
method. |
|
kwargs (:obj:`Dict[str, any]`): |
|
Additional parameters from which to initialize the configuration object. |
|
|
|
Returns: |
|
:class:`PretrainedConfig`: An instance of a configuration object |
|
""" |
|
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False) |
|
|
|
config = cls(**config_dict) |
|
|
|
if hasattr(config, "pruned_heads"): |
|
config.pruned_heads = dict((int(key), value) for key, value in config.pruned_heads.items()) |
|
|
|
|
|
to_remove = [] |
|
for key, value in kwargs.items(): |
|
if hasattr(config, key): |
|
setattr(config, key, value) |
|
to_remove.append(key) |
|
for key in to_remove: |
|
kwargs.pop(key, None) |
|
|
|
logger.info("Model config %s", str(config)) |
|
if return_unused_kwargs: |
|
return config, kwargs |
|
else: |
|
return config |
|
|
|
@classmethod |
|
def from_json_file(cls, json_file: str) -> "PretrainedConfig": |
|
""" |
|
Constructs a `Config` from the path to a json file of parameters. |
|
|
|
Args: |
|
json_file (:obj:`string`): |
|
Path to the JSON file containing the parameters. |
|
|
|
Returns: |
|
:class:`PretrainedConfig`: An instance of a configuration object |
|
|
|
""" |
|
config_dict = cls._dict_from_json_file(json_file) |
|
return cls(**config_dict) |
|
|
|
@classmethod |
|
def _dict_from_json_file(cls, json_file: str): |
|
with open(json_file, "r", encoding="utf-8") as reader: |
|
text = reader.read() |
|
return json.loads(text) |
|
|
|
def __eq__(self, other): |
|
return self.__dict__ == other.__dict__ |
|
|
|
def __repr__(self): |
|
return "{} {}".format(self.__class__.__name__, self.to_json_string()) |
|
|
|
def to_diff_dict(self): |
|
""" |
|
Removes all attributes from config which correspond to the default |
|
config attributes for better readability and serializes to a Python |
|
dictionary. |
|
|
|
Returns: |
|
:obj:`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, |
|
""" |
|
config_dict = self.to_dict() |
|
|
|
|
|
default_config_dict = PretrainedConfig().to_dict() |
|
|
|
serializable_config_dict = {} |
|
|
|
|
|
for key, value in config_dict.items(): |
|
if key not in default_config_dict or value != default_config_dict[key]: |
|
serializable_config_dict[key] = value |
|
|
|
return serializable_config_dict |
|
|
|
def to_dict(self): |
|
""" |
|
Serializes this instance to a Python dictionary. |
|
|
|
Returns: |
|
:obj:`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, |
|
""" |
|
output = copy.deepcopy(self.__dict__) |
|
if hasattr(self.__class__, "model_type"): |
|
output["model_type"] = self.__class__.model_type |
|
return output |
|
|
|
def to_json_string(self, use_diff=True): |
|
""" |
|
Serializes this instance to a JSON string. |
|
|
|
Args: |
|
use_diff (:obj:`bool`): |
|
If set to True, only the difference between the config instance and the default PretrainedConfig() is serialized to JSON string. |
|
|
|
Returns: |
|
:obj:`string`: String containing all the attributes that make up this configuration instance in JSON format. |
|
""" |
|
if use_diff is True: |
|
config_dict = self.to_diff_dict() |
|
else: |
|
config_dict = self.to_dict() |
|
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n" |
|
|
|
def to_json_file(self, json_file_path, use_diff=True): |
|
""" |
|
Save this instance to a json file. |
|
|
|
Args: |
|
json_file_path (:obj:`string`): |
|
Path to the JSON file in which this configuration instance's parameters will be saved. |
|
use_diff (:obj:`bool`): |
|
If set to True, only the difference between the config instance and the default PretrainedConfig() is serialized to JSON file. |
|
""" |
|
with open(json_file_path, "w", encoding="utf-8") as writer: |
|
writer.write(self.to_json_string(use_diff=use_diff)) |
|
|
|
def update(self, config_dict: Dict): |
|
""" |
|
Updates attributes of this class |
|
with attributes from `config_dict`. |
|
|
|
Args: |
|
:obj:`Dict[str, any]`: Dictionary of attributes that shall be updated for this class. |
|
""" |
|
for key, value in config_dict.items(): |
|
setattr(self, key, value) |
|
|