elia / mask2former_utils /criterion.py
yxchng
add files
a166479
# Copyright (c) Facebook, Inc. and its affiliates.
# Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/models/detr.py
"""
MaskFormer criterion.
"""
import torch
import numpy as np
import torch.nn.functional as F
import torch.distributed as dist
from torch import nn
import sys
import os
sys.path.append(os.path.dirname(__file__) + os.sep + '../')
from .point_features import point_sample, get_uncertain_point_coords_with_randomness
from .misc import is_dist_avail_and_initialized, nested_tensor_from_tensor_list, get_world_size
def dice_loss(
inputs: torch.Tensor,
targets: torch.Tensor,
num_masks: float,
):
"""
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
"""
inputs = inputs.sigmoid()
inputs = inputs.flatten(1)
numerator = 2 * (inputs * targets).sum(-1)
denominator = inputs.sum(-1) + targets.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
return loss.sum() / num_masks
def sigmoid_ce_loss(
inputs: torch.Tensor,
targets: torch.Tensor,
num_masks: float,
):
"""
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
Returns:
Loss tensor
"""
loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
return loss.mean(1).sum() / num_masks
def sigmoid_focal_loss(inputs, targets, num_masks, alpha: float = 0.25, gamma: float = 2):
"""
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
alpha: (optional) Weighting factor in range (0,1) to balance
positive vs negative examples. Default = -1 (no weighting).
gamma: Exponent of the modulating factor (1 - p_t) to
balance easy vs hard examples.
Returns:
Loss tensor
"""
prob = inputs.sigmoid()
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
p_t = prob * targets + (1 - prob) * (1 - targets)
loss = ce_loss * ((1 - p_t) ** gamma)
if alpha >= 0:
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
loss = alpha_t * loss
return loss.mean(1).sum() / num_masks
def calculate_uncertainty(logits):
"""
We estimate uncerainty as L1 distance between 0.0 and the logit prediction in 'logits' for the
foreground class in `classes`.
Args:
logits (Tensor): A tensor of shape (R, 1, ...) for class-specific or
class-agnostic, where R is the total number of predicted masks in all images and C is
the number of foreground classes. The values are logits.
Returns:
scores (Tensor): A tensor of shape (R, 1, ...) that contains uncertainty scores with
the most uncertain locations having the highest uncertainty score.
"""
assert logits.shape[1] == 1
gt_class_logits = logits.clone()
return -(torch.abs(gt_class_logits))
class SetCriterion(nn.Module):
"""This class computes the loss for DETR.
The process happens in two steps:
1) we compute hungarian assignment between ground truth boxes and the outputs of the model
2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
"""
def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses,
num_points, oversample_ratio, importance_sample_ratio, device):
"""Create the criterion.
Parameters:
num_classes: number of object categories, omitting the special no-object category
matcher: module able to compute a matching between targets and proposals
weight_dict: dict containing as key the names of the losses and as values their relative weight.
eos_coef: relative classification weight applied to the no-object category
losses: list of all the losses to be applied. See get_loss for list of available losses.
"""
super().__init__()
self.num_classes = num_classes
self.matcher = matcher
self.weight_dict = weight_dict
self.eos_coef = eos_coef
self.losses = losses
self.device = device
empty_weight = torch.ones(self.num_classes + 1).to(device)
empty_weight[-1] = self.eos_coef
self.register_buffer("empty_weight", empty_weight)
# pointwise mask loss parameters
self.num_points = num_points
self.oversample_ratio = oversample_ratio
self.importance_sample_ratio = importance_sample_ratio
def loss_labels(self, outputs, targets, indices, num_masks):
"""Classification loss (NLL)
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
"""
assert "pred_logits" in outputs
src_logits = outputs["pred_logits"].float()
idx = self._get_src_permutation_idx(indices)
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)]).to(self.device)
target_classes = torch.full(src_logits.shape[:2], 0, dtype=torch.int64, device=src_logits.device)
target_classes[idx] = target_classes_o
loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight)
losses = {"loss_ce": loss_ce}
return losses
def loss_masks(self, outputs, targets, indices, num_masks):
"""Compute the losses related to the masks: the focal loss and the dice loss.
targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]
"""
assert "pred_masks" in outputs
src_idx = self._get_src_permutation_idx(indices)
tgt_idx = self._get_tgt_permutation_idx(indices)
src_masks = outputs["pred_masks"] #
src_masks = src_masks[src_idx]
masks = [t["masks"] for t in targets]
# TODO use valid to mask invalid areas due to padding in loss
target_masks, valid = nested_tensor_from_tensor_list(masks).decompose()
target_masks = target_masks.to(src_masks)
target_masks = target_masks[tgt_idx]
# ===================================================================================
# No need to upsample predictions as we are using normalized coordinates :)
# N x 1 x H x W
# src_masks = src_masks[:, None]
# target_masks = target_masks[:, None]
# with torch.no_grad():
# # sample point_coords
# point_coords = get_uncertain_point_coords_with_randomness(
# src_masks,
# lambda logits: calculate_uncertainty(logits),
# self.num_points,
# self.oversample_ratio,
# self.importance_sample_ratio,
# )
# # get gt labels
# point_labels = point_sample(
# target_masks,
# point_coords,
# align_corners=False,
# ).squeeze(1)
# point_logits = point_sample(
# src_masks,
# point_coords,
# align_corners=False,
# ).squeeze(1)
# ===================================================================================
point_logits = src_masks.flatten(1)
point_labels = target_masks.flatten(1)
losses = {
"loss_mask": sigmoid_ce_loss(point_logits, point_labels, num_masks), # sigmoid_focal_loss(point_logits, point_labels, num_masks), #
"loss_dice": dice_loss(point_logits, point_labels, num_masks)
}
del src_masks
del target_masks
return losses
def _get_src_permutation_idx(self, indices):
# permute predictions following indices
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
src_idx = torch.cat([src for (src, _) in indices])
return batch_idx, src_idx
def _get_tgt_permutation_idx(self, indices):
# permute targets following indices
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
tgt_idx = torch.cat([tgt for (_, tgt) in indices])
return batch_idx, tgt_idx
def _get_binary_mask(self, target):
y, x = target.size()
target_onehot = torch.zeros(self.num_classes + 1, y, x).to(target.device)
target_onehot = target_onehot.scatter(dim=0, index=target.unsqueeze(0), value=1)
return target_onehot
def get_loss(self, loss, outputs, targets, indices, num_masks):
loss_map = {
'labels': self.loss_labels,
'masks': self.loss_masks,
}
assert loss in loss_map, f"do you really want to compute {loss} loss?"
return loss_map[loss](outputs, targets, indices, num_masks)
def forward(self, outputs, gt_masks):
"""This performs the loss computation.
Parameters:
outputs: dict of tensors, see the output specification of the model for the format
gt_masks: [bs, h_net_output, w_net_output]
"""
outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"}
targets = self._get_targets(gt_masks)
# Retrieve the matching between the outputs of the last layer and the targets
indices = self.matcher(outputs_without_aux, targets)
# Compute the average number of target boxes accross all nodes, for normalization purposes
num_masks = sum(len(t["labels"]) for t in targets)
num_masks = torch.as_tensor([num_masks], dtype=torch.float, device=next(iter(outputs.values())).device)
if is_dist_avail_and_initialized():
torch.distributed.all_reduce(num_masks)
num_masks = torch.clamp(num_masks / get_world_size(), min=1).item()
# Compute all the requested losses
losses = {}
for loss in self.losses:
losses.update(self.get_loss(loss, outputs, targets, indices, num_masks))
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if "aux_outputs" in outputs:
for i, aux_outputs in enumerate(outputs["aux_outputs"]):
indices = self.matcher(aux_outputs, targets)
for loss in self.losses:
l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_masks)
l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
losses.update(l_dict)
return losses
def _get_targets(self, gt_masks):
targets = []
for mask in gt_masks:
binary_masks = self._get_binary_mask(mask)
cls_label = torch.unique(mask)
labels = cls_label[1:]
binary_masks = binary_masks[labels]
targets.append({'masks': binary_masks, 'labels': labels})
return targets
def __repr__(self):
head = "Criterion " + self.__class__.__name__
body = [
"matcher: {}".format(self.matcher.__repr__(_repr_indent=8)),
"losses: {}".format(self.losses),
"weight_dict: {}".format(self.weight_dict),
"num_classes: {}".format(self.num_classes),
"eos_coef: {}".format(self.eos_coef),
"num_points: {}".format(self.num_points),
"oversample_ratio: {}".format(self.oversample_ratio),
"importance_sample_ratio: {}".format(self.importance_sample_ratio),
]
_repr_indent = 4
lines = [head] + [" " * _repr_indent + line for line in body]
return "\n".join(lines)
class Criterion(object):
def __init__(self, num_classes, alpha=0.5, gamma=2, weight=None, ignore_index=0):
self.num_classes = num_classes
self.alpha = alpha
self.gamma = gamma
self.weight = weight
self.ignore_index = ignore_index
self.smooth = 1e-5
self.ce_fn = nn.CrossEntropyLoss(weight=self.weight, ignore_index=self.ignore_index, reduction='none')
def get_loss(self, outputs, gt_masks):
"""This performs the loss computation.
Parameters:
outputs: dict of tensors, see the output specification of the model for the format
gt_masks: [bs, h_net_output, w_net_output]
"""
loss_labels = 0.0
loss_masks = 0.0
loss_dices = 0.0
num = gt_masks.shape[0]
pred_logits = [outputs["pred_logits"].float()] # [bs, num_query, num_classes + 1]
pred_masks = [outputs['pred_masks'].float()] # [bs, num_query, h, w]
targets = self._get_targets(gt_masks, pred_logits[0].shape[1], pred_logits[0].device)
for aux_output in outputs['aux_outputs']:
pred_logits.append(aux_output["pred_logits"].float())
pred_masks.append(aux_output["pred_masks"].float())
gt_label = targets['labels'] # [bs, num_query]
gt_mask_list = targets['masks']
for mask_cls, pred_mask in zip(pred_logits, pred_masks):
loss_labels += F.cross_entropy(mask_cls.transpose(1, 2), gt_label)
# loss_masks += self.focal_loss(pred_result, gt_masks.to(pred_result.device))
loss_dices += self.dice_loss(pred_mask, gt_mask_list)
return loss_labels/num, loss_dices/num
def binary_dice_loss(self, inputs, targets):
inputs = inputs.sigmoid()
inputs = inputs.flatten(1)
targets = targets.flatten(1)
numerator = 2 * torch.einsum("nc,mc->nm", inputs, targets)
denominator = inputs.sum(-1)[:, None] + targets.sum(-1)[None, :]
loss = 1 - (numerator + 1) / (denominator + 1)
return loss.mean()
def dice_loss(self, predict, targets):
bs = predict.shape[0]
total_loss = 0
for i in range(bs):
pred_mask = predict[i]
tgt_mask = targets[i].to(predict.device)
dice_loss_value = self.binary_dice_loss(pred_mask, tgt_mask)
total_loss += dice_loss_value
return total_loss/bs
def focal_loss(self, preds, labels):
"""
preds: [bs, num_class + 1, h, w]
labels: [bs, h, w]
"""
logpt = -self.ce_fn(preds, labels)
pt = torch.exp(logpt)
loss = -((1 - pt) ** self.gamma) * self.alpha * logpt
return loss.mean()
def _get_binary_mask(self, target):
y, x = target.size()
target_onehot = torch.zeros(self.num_classes + 1, y, x)
target_onehot = target_onehot.scatter(dim=0, index=target.unsqueeze(0), value=1)
return target_onehot
def _get_targets(self, gt_masks, num_query, device):
binary_masks = []
gt_labels = []
for mask in gt_masks:
mask_onehot = self._get_binary_mask(mask)
cls_label = torch.unique(mask)
labels = torch.full((num_query,), 0, dtype=torch.int64, device=gt_masks.device)
labels[:len(cls_label)] = cls_label
binary_masks.append(mask_onehot[cls_label])
gt_labels.append(labels)
return {"labels": torch.stack(gt_labels).to(device), "masks": binary_masks}