Spaces:
Configuration error
Configuration error
from .network import U2NET | |
import os | |
from PIL import Image | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import torchvision.transforms as transforms | |
from collections import OrderedDict | |
def load_checkpoint(model, checkpoint_path): | |
if not os.path.exists(checkpoint_path): | |
print("----No checkpoints at given path----") | |
return | |
model_state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu")) | |
new_state_dict = OrderedDict() | |
for k, v in model_state_dict.items(): | |
name = k[7:] # remove `module.` | |
new_state_dict[name] = v | |
model.load_state_dict(new_state_dict) | |
print("----checkpoints loaded from path: {}----".format(checkpoint_path)) | |
return model | |
class Normalize_image(object): | |
"""Normalize given tensor into given mean and standard dev | |
Args: | |
mean (float): Desired mean to substract from tensors | |
std (float): Desired std to divide from tensors | |
""" | |
def __init__(self, mean, std): | |
assert isinstance(mean, (float)) | |
if isinstance(mean, float): | |
self.mean = mean | |
if isinstance(std, float): | |
self.std = std | |
self.normalize_1 = transforms.Normalize(self.mean, self.std) | |
self.normalize_3 = transforms.Normalize([self.mean] * 3, [self.std] * 3) | |
self.normalize_18 = transforms.Normalize([self.mean] * 18, [self.std] * 18) | |
def __call__(self, image_tensor): | |
if image_tensor.shape[0] == 1: | |
return self.normalize_1(image_tensor) | |
elif image_tensor.shape[0] == 3: | |
return self.normalize_3(image_tensor) | |
elif image_tensor.shape[0] == 18: | |
return self.normalize_18(image_tensor) | |
else: | |
assert "Please set proper channels! Normlization implemented only for 1, 3 and 18" | |
def apply_transform(img): | |
transforms_list = [] | |
transforms_list += [transforms.ToTensor()] | |
transforms_list += [Normalize_image(0.5, 0.5)] | |
transform_rgb = transforms.Compose(transforms_list) | |
return transform_rgb(img) | |
def generate_mask(input_image, net, device='cpu'): | |
img = input_image | |
img_size = img.size | |
img = img.resize((768, 768), Image.BICUBIC) | |
image_tensor = apply_transform(img) | |
image_tensor = torch.unsqueeze(image_tensor, 0) | |
with torch.no_grad(): | |
output_tensor = net(image_tensor.to(device)) | |
output_tensor = F.log_softmax(output_tensor[0], dim=1) | |
output_tensor = torch.max(output_tensor, dim=1, keepdim=True)[1] | |
output_tensor = torch.squeeze(output_tensor, dim=0) | |
output_arr = output_tensor.cpu().numpy() | |
mask = (output_arr != 0).astype(np.uint8) * 255 | |
mask = mask[0] # Selecting the first channel to make it 2D | |
alpha_mask_img = Image.fromarray(mask, mode='L') | |
alpha_mask_img = alpha_mask_img.resize(img_size, Image.BICUBIC) | |
return alpha_mask_img | |
def load_seg_model(checkpoint_path, device='cpu'): | |
net = U2NET(in_ch=3, out_ch=4) | |
net = load_checkpoint(net, checkpoint_path) | |
net = net.to(device) | |
net = net.eval() | |
return net | |