S3Diff / src /s3diff_tile.py
zhangap's picture
Upload 213 files
36d9761 verified
raw
history blame
20.6 kB
import os
import re
import requests
import sys
import copy
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
from transformers import AutoTokenizer, CLIPTextModel
from diffusers import AutoencoderKL, UNet2DConditionModel
from peft import LoraConfig, get_peft_model
p = "src/"
sys.path.append(p)
from model import make_1step_sched, my_lora_fwd
from basicsr.archs.arch_util import default_init_weights
from my_utils.vaehook import VAEHook, perfcount
def get_layer_number(module_name):
base_layers = {
'down_blocks': 0,
'mid_block': 4,
'up_blocks': 5
}
if module_name == 'conv_out':
return 9
base_layer = None
for key in base_layers:
if key in module_name:
base_layer = base_layers[key]
break
if base_layer is None:
return None
additional_layers = int(re.findall(r'\.(\d+)', module_name)[0]) #sum(int(num) for num in re.findall(r'\d+', module_name))
final_layer = base_layer + additional_layers
return final_layer
class S3Diff(torch.nn.Module):
def __init__(self, sd_path=None, pretrained_path=None, lora_rank_unet=32, lora_rank_vae=16, block_embedding_dim=64, args=None):
super().__init__()
self.args = args
self.latent_tiled_size = args.latent_tiled_size
self.latent_tiled_overlap = args.latent_tiled_overlap
self.tokenizer = AutoTokenizer.from_pretrained(sd_path, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder").cuda()
self.sched = make_1step_sched(sd_path)
self.guidance_scale = 1.07
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(sd_path, subfolder="unet")
target_modules_vae = r"^encoder\..*(conv1|conv2|conv_in|conv_shortcut|conv|conv_out|to_k|to_q|to_v|to_out\.0)$"
target_modules_unet = [
"to_k", "to_q", "to_v", "to_out.0", "conv", "conv1", "conv2", "conv_shortcut", "conv_out",
"proj_in", "proj_out", "ff.net.2", "ff.net.0.proj"
]
num_embeddings = 64
self.W = nn.Parameter(torch.randn(num_embeddings), requires_grad=False)
self.vae_de_mlp = nn.Sequential(
nn.Linear(num_embeddings * 4, 256),
nn.ReLU(True),
)
self.unet_de_mlp = nn.Sequential(
nn.Linear(num_embeddings * 4, 256),
nn.ReLU(True),
)
self.vae_block_mlp = nn.Sequential(
nn.Linear(block_embedding_dim, 64),
nn.ReLU(True),
)
self.unet_block_mlp = nn.Sequential(
nn.Linear(block_embedding_dim, 64),
nn.ReLU(True),
)
self.vae_fuse_mlp = nn.Linear(256 + 64, lora_rank_vae ** 2)
self.unet_fuse_mlp = nn.Linear(256 + 64, lora_rank_unet ** 2)
default_init_weights([self.vae_de_mlp, self.unet_de_mlp, self.vae_block_mlp, self.unet_block_mlp, \
self.vae_fuse_mlp, self.unet_fuse_mlp], 1e-5)
# vae
self.vae_block_embeddings = nn.Embedding(6, block_embedding_dim)
self.unet_block_embeddings = nn.Embedding(10, block_embedding_dim)
if pretrained_path is not None:
sd = torch.load(pretrained_path, map_location="cpu")
vae_lora_config = LoraConfig(r=sd["rank_vae"], init_lora_weights="gaussian", target_modules=sd["vae_lora_target_modules"])
vae.add_adapter(vae_lora_config, adapter_name="vae_skip")
_sd_vae = vae.state_dict()
for k in sd["state_dict_vae"]:
_sd_vae[k] = sd["state_dict_vae"][k]
vae.load_state_dict(_sd_vae)
unet_lora_config = LoraConfig(r=sd["rank_unet"], init_lora_weights="gaussian", target_modules=sd["unet_lora_target_modules"])
unet.add_adapter(unet_lora_config)
_sd_unet = unet.state_dict()
for k in sd["state_dict_unet"]:
_sd_unet[k] = sd["state_dict_unet"][k]
unet.load_state_dict(_sd_unet)
_vae_de_mlp = self.vae_de_mlp.state_dict()
for k in sd["state_dict_vae_de_mlp"]:
_vae_de_mlp[k] = sd["state_dict_vae_de_mlp"][k]
self.vae_de_mlp.load_state_dict(_vae_de_mlp)
_unet_de_mlp = self.unet_de_mlp.state_dict()
for k in sd["state_dict_unet_de_mlp"]:
_unet_de_mlp[k] = sd["state_dict_unet_de_mlp"][k]
self.unet_de_mlp.load_state_dict(_unet_de_mlp)
_vae_block_mlp = self.vae_block_mlp.state_dict()
for k in sd["state_dict_vae_block_mlp"]:
_vae_block_mlp[k] = sd["state_dict_vae_block_mlp"][k]
self.vae_block_mlp.load_state_dict(_vae_block_mlp)
_unet_block_mlp = self.unet_block_mlp.state_dict()
for k in sd["state_dict_unet_block_mlp"]:
_unet_block_mlp[k] = sd["state_dict_unet_block_mlp"][k]
self.unet_block_mlp.load_state_dict(_unet_block_mlp)
_vae_fuse_mlp = self.vae_fuse_mlp.state_dict()
for k in sd["state_dict_vae_fuse_mlp"]:
_vae_fuse_mlp[k] = sd["state_dict_vae_fuse_mlp"][k]
self.vae_fuse_mlp.load_state_dict(_vae_fuse_mlp)
_unet_fuse_mlp = self.unet_fuse_mlp.state_dict()
for k in sd["state_dict_unet_fuse_mlp"]:
_unet_fuse_mlp[k] = sd["state_dict_unet_fuse_mlp"][k]
self.unet_fuse_mlp.load_state_dict(_unet_fuse_mlp)
self.W = nn.Parameter(sd["w"], requires_grad=False)
embeddings_state_dict = sd["state_embeddings"]
self.vae_block_embeddings.load_state_dict(embeddings_state_dict['state_dict_vae_block'])
self.unet_block_embeddings.load_state_dict(embeddings_state_dict['state_dict_unet_block'])
else:
print("Initializing model with random weights")
vae_lora_config = LoraConfig(r=lora_rank_vae, init_lora_weights="gaussian",
target_modules=target_modules_vae)
vae.add_adapter(vae_lora_config, adapter_name="vae_skip")
unet_lora_config = LoraConfig(r=lora_rank_unet, init_lora_weights="gaussian",
target_modules=target_modules_unet
)
unet.add_adapter(unet_lora_config)
self.lora_rank_unet = lora_rank_unet
self.lora_rank_vae = lora_rank_vae
self.target_modules_vae = target_modules_vae
self.target_modules_unet = target_modules_unet
self.vae_lora_layers = []
for name, module in vae.named_modules():
if 'base_layer' in name:
self.vae_lora_layers.append(name[:-len(".base_layer")])
for name, module in vae.named_modules():
if name in self.vae_lora_layers:
module.forward = my_lora_fwd.__get__(module, module.__class__)
self.unet_lora_layers = []
for name, module in unet.named_modules():
if 'base_layer' in name:
self.unet_lora_layers.append(name[:-len(".base_layer")])
for name, module in unet.named_modules():
if name in self.unet_lora_layers:
module.forward = my_lora_fwd.__get__(module, module.__class__)
self.unet_layer_dict = {name: get_layer_number(name) for name in self.unet_lora_layers}
unet.to("cuda")
vae.to("cuda")
self.unet, self.vae = unet, vae
self.timesteps = torch.tensor([999], device="cuda").long()
self.text_encoder.requires_grad_(False)
# vae tile
self._init_tiled_vae(encoder_tile_size=args.vae_encoder_tiled_size, decoder_tile_size=args.vae_decoder_tiled_size)
def set_eval(self):
self.unet.eval()
self.vae.eval()
self.vae_de_mlp.eval()
self.unet_de_mlp.eval()
self.vae_block_mlp.eval()
self.unet_block_mlp.eval()
self.vae_fuse_mlp.eval()
self.unet_fuse_mlp.eval()
self.vae_block_embeddings.requires_grad_(False)
self.unet_block_embeddings.requires_grad_(False)
self.unet.requires_grad_(False)
self.vae.requires_grad_(False)
def set_train(self):
self.unet.train()
self.vae.train()
self.vae_de_mlp.train()
self.unet_de_mlp.train()
self.vae_block_mlp.train()
self.unet_block_mlp.train()
self.vae_fuse_mlp.train()
self.unet_fuse_mlp.train()
self.vae_block_embeddings.requires_grad_(True)
self.unet_block_embeddings.requires_grad_(True)
for n, _p in self.unet.named_parameters():
if "lora" in n:
_p.requires_grad = True
self.unet.conv_in.requires_grad_(True)
for n, _p in self.vae.named_parameters():
if "lora" in n:
_p.requires_grad = True
@perfcount
@torch.no_grad()
def forward(self, c_t, deg_score, pos_prompt, neg_prompt):
if pos_prompt is not None:
# encode the text prompt
pos_caption_tokens = self.tokenizer(pos_prompt, max_length=self.tokenizer.model_max_length,
padding="max_length", truncation=True, return_tensors="pt").input_ids.cuda()
pos_caption_enc = self.text_encoder(pos_caption_tokens)[0]
else:
pos_caption_enc = self.text_encoder(prompt_tokens)[0]
if neg_prompt is not None:
# encode the text prompt
neg_caption_tokens = self.tokenizer(neg_prompt, max_length=self.tokenizer.model_max_length,
padding="max_length", truncation=True, return_tensors="pt").input_ids.cuda()
neg_caption_enc = self.text_encoder(neg_caption_tokens)[0]
else:
neg_caption_enc = self.text_encoder(neg_prompt_tokens)[0]
# degradation fourier embedding
deg_proj = deg_score[..., None] * self.W[None, None, :] * 2 * np.pi
deg_proj = torch.cat([torch.sin(deg_proj), torch.cos(deg_proj)], dim=-1)
deg_proj = torch.cat([deg_proj[:, 0], deg_proj[:, 1]], dim=-1)
# degradation mlp forward
vae_de_c_embed = self.vae_de_mlp(deg_proj)
unet_de_c_embed = self.unet_de_mlp(deg_proj)
# block embedding mlp forward
vae_block_c_embeds = self.vae_block_mlp(self.vae_block_embeddings.weight)
unet_block_c_embeds = self.unet_block_mlp(self.unet_block_embeddings.weight)
vae_embeds = self.vae_fuse_mlp(torch.cat([vae_de_c_embed.unsqueeze(1).repeat(1, vae_block_c_embeds.shape[0], 1), \
vae_block_c_embeds.unsqueeze(0).repeat(vae_de_c_embed.shape[0],1,1)], -1))
unet_embeds = self.unet_fuse_mlp(torch.cat([unet_de_c_embed.unsqueeze(1).repeat(1, unet_block_c_embeds.shape[0], 1), \
unet_block_c_embeds.unsqueeze(0).repeat(unet_de_c_embed.shape[0],1,1)], -1))
for layer_name, module in self.vae.named_modules():
if layer_name in self.vae_lora_layers:
split_name = layer_name.split(".")
if split_name[1] == 'down_blocks':
block_id = int(split_name[2])
vae_embed = vae_embeds[:, block_id]
elif split_name[1] == 'mid_block':
vae_embed = vae_embeds[:, -2]
else:
vae_embed = vae_embeds[:, -1]
module.de_mod = vae_embed.reshape(-1, self.lora_rank_vae, self.lora_rank_vae)
for layer_name, module in self.unet.named_modules():
if layer_name in self.unet_lora_layers:
split_name = layer_name.split(".")
if split_name[0] == 'down_blocks':
block_id = int(split_name[1])
unet_embed = unet_embeds[:, block_id]
elif split_name[0] == 'mid_block':
unet_embed = unet_embeds[:, 4]
elif split_name[0] == 'up_blocks':
block_id = int(split_name[1]) + 5
unet_embed = unet_embeds[:, block_id]
else:
unet_embed = unet_embeds[:, -1]
module.de_mod = unet_embed.reshape(-1, self.lora_rank_unet, self.lora_rank_unet)
lq_latent = self.vae.encode(c_t).latent_dist.sample() * self.vae.config.scaling_factor
## add tile function
_, _, h, w = lq_latent.size()
tile_size, tile_overlap = (self.latent_tiled_size, self.latent_tiled_overlap)
if h * w <= tile_size * tile_size:
print(f"[Tiled Latent]: the input size is tiny and unnecessary to tile.")
pos_model_pred = self.unet(lq_latent, self.timesteps, encoder_hidden_states=pos_caption_enc).sample
neg_model_pred = self.unet(lq_latent, self.timesteps, encoder_hidden_states=neg_caption_enc).sample
model_pred = neg_model_pred + self.guidance_scale * (pos_model_pred - neg_model_pred)
else:
print(f"[Tiled Latent]: the input size is {c_t.shape[-2]}x{c_t.shape[-1]}, need to tiled")
# tile_weights = self._gaussian_weights(tile_size, tile_size, 1).to()
tile_size = min(tile_size, min(h, w))
tile_weights = self._gaussian_weights(tile_size, tile_size, 1).to(c_t.device)
grid_rows = 0
cur_x = 0
while cur_x < lq_latent.size(-1):
cur_x = max(grid_rows * tile_size-tile_overlap * grid_rows, 0)+tile_size
grid_rows += 1
grid_cols = 0
cur_y = 0
while cur_y < lq_latent.size(-2):
cur_y = max(grid_cols * tile_size-tile_overlap * grid_cols, 0)+tile_size
grid_cols += 1
input_list = []
noise_preds = []
for row in range(grid_rows):
noise_preds_row = []
for col in range(grid_cols):
if col < grid_cols-1 or row < grid_rows-1:
# extract tile from input image
ofs_x = max(row * tile_size-tile_overlap * row, 0)
ofs_y = max(col * tile_size-tile_overlap * col, 0)
# input tile area on total image
if row == grid_rows-1:
ofs_x = w - tile_size
if col == grid_cols-1:
ofs_y = h - tile_size
input_start_x = ofs_x
input_end_x = ofs_x + tile_size
input_start_y = ofs_y
input_end_y = ofs_y + tile_size
# input tile dimensions
input_tile = lq_latent[:, :, input_start_y:input_end_y, input_start_x:input_end_x]
input_list.append(input_tile)
if len(input_list) == 1 or col == grid_cols-1:
input_list_t = torch.cat(input_list, dim=0)
# predict the noise residual
pos_model_pred = self.unet(input_list_t, self.timesteps, encoder_hidden_states=pos_caption_enc).sample
neg_model_pred = self.unet(input_list_t, self.timesteps, encoder_hidden_states=neg_caption_enc).sample
model_out = neg_model_pred + self.guidance_scale * (pos_model_pred - neg_model_pred)
input_list = []
noise_preds.append(model_out)
# Stitch noise predictions for all tiles
noise_pred = torch.zeros(lq_latent.shape, device=lq_latent.device)
contributors = torch.zeros(lq_latent.shape, device=lq_latent.device)
# Add each tile contribution to overall latents
for row in range(grid_rows):
for col in range(grid_cols):
if col < grid_cols-1 or row < grid_rows-1:
# extract tile from input image
ofs_x = max(row * tile_size-tile_overlap * row, 0)
ofs_y = max(col * tile_size-tile_overlap * col, 0)
# input tile area on total image
if row == grid_rows-1:
ofs_x = w - tile_size
if col == grid_cols-1:
ofs_y = h - tile_size
input_start_x = ofs_x
input_end_x = ofs_x + tile_size
input_start_y = ofs_y
input_end_y = ofs_y + tile_size
noise_pred[:, :, input_start_y:input_end_y, input_start_x:input_end_x] += noise_preds[row*grid_cols + col] * tile_weights
contributors[:, :, input_start_y:input_end_y, input_start_x:input_end_x] += tile_weights
# Average overlapping areas with more than 1 contributor
noise_pred /= contributors
model_pred = noise_pred
x_denoised = self.sched.step(model_pred, self.timesteps, lq_latent, return_dict=True).prev_sample
output_image = (self.vae.decode(x_denoised / self.vae.config.scaling_factor).sample).clamp(-1, 1)
return output_image
def save_model(self, outf):
sd = {}
sd["unet_lora_target_modules"] = self.target_modules_unet
sd["vae_lora_target_modules"] = self.target_modules_vae
sd["rank_unet"] = self.lora_rank_unet
sd["rank_vae"] = self.lora_rank_vae
sd["state_dict_unet"] = {k: v for k, v in self.unet.state_dict().items() if "lora" in k or "conv_in" in k}
sd["state_dict_vae"] = {k: v for k, v in self.vae.state_dict().items() if "lora" in k or "skip_conv" in k}
sd["state_dict_vae_de_mlp"] = {k: v for k, v in self.vae_de_mlp.state_dict().items()}
sd["state_dict_unet_de_mlp"] = {k: v for k, v in self.unet_de_mlp.state_dict().items()}
sd["state_dict_vae_block_mlp"] = {k: v for k, v in self.vae_block_mlp.state_dict().items()}
sd["state_dict_unet_block_mlp"] = {k: v for k, v in self.unet_block_mlp.state_dict().items()}
sd["state_dict_vae_fuse_mlp"] = {k: v for k, v in self.vae_fuse_mlp.state_dict().items()}
sd["state_dict_unet_fuse_mlp"] = {k: v for k, v in self.unet_fuse_mlp.state_dict().items()}
sd["w"] = self.W
sd["state_embeddings"] = {
"state_dict_vae_block": self.vae_block_embeddings.state_dict(),
"state_dict_unet_block": self.unet_block_embeddings.state_dict(),
}
torch.save(sd, outf)
def _set_latent_tile(self,
latent_tiled_size = 96,
latent_tiled_overlap = 32):
self.latent_tiled_size = latent_tiled_size
self.latent_tiled_overlap = latent_tiled_overlap
def _init_tiled_vae(self,
encoder_tile_size = 256,
decoder_tile_size = 256,
fast_decoder = False,
fast_encoder = False,
color_fix = False,
vae_to_gpu = True):
# save original forward (only once)
if not hasattr(self.vae.encoder, 'original_forward'):
setattr(self.vae.encoder, 'original_forward', self.vae.encoder.forward)
if not hasattr(self.vae.decoder, 'original_forward'):
setattr(self.vae.decoder, 'original_forward', self.vae.decoder.forward)
encoder = self.vae.encoder
decoder = self.vae.decoder
self.vae.encoder.forward = VAEHook(
encoder, encoder_tile_size, is_decoder=False, fast_decoder=fast_decoder, fast_encoder=fast_encoder, color_fix=color_fix, to_gpu=vae_to_gpu)
self.vae.decoder.forward = VAEHook(
decoder, decoder_tile_size, is_decoder=True, fast_decoder=fast_decoder, fast_encoder=fast_encoder, color_fix=color_fix, to_gpu=vae_to_gpu)
def _gaussian_weights(self, tile_width, tile_height, nbatches):
"""Generates a gaussian mask of weights for tile contributions"""
from numpy import pi, exp, sqrt
import numpy as np
latent_width = tile_width
latent_height = tile_height
var = 0.01
midpoint = (latent_width - 1) / 2 # -1 because index goes from 0 to latent_width - 1
x_probs = [exp(-(x-midpoint)*(x-midpoint)/(latent_width*latent_width)/(2*var)) / sqrt(2*pi*var) for x in range(latent_width)]
midpoint = latent_height / 2
y_probs = [exp(-(y-midpoint)*(y-midpoint)/(latent_height*latent_height)/(2*var)) / sqrt(2*pi*var) for y in range(latent_height)]
weights = np.outer(y_probs, x_probs)
return torch.tile(torch.tensor(weights), (nbatches, self.unet.config.in_channels, 1, 1))