|
import cv2 |
|
import math |
|
import numpy as np |
|
import random |
|
import torch |
|
from scipy import special |
|
from scipy.stats import multivariate_normal |
|
from torchvision.transforms.functional_tensor import rgb_to_grayscale |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def sigma_matrix2(sig_x, sig_y, theta): |
|
"""Calculate the rotated sigma matrix (two dimensional matrix). |
|
|
|
Args: |
|
sig_x (float): |
|
sig_y (float): |
|
theta (float): Radian measurement. |
|
|
|
Returns: |
|
ndarray: Rotated sigma matrix. |
|
""" |
|
d_matrix = np.array([[sig_x**2, 0], [0, sig_y**2]]) |
|
u_matrix = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) |
|
return np.dot(u_matrix, np.dot(d_matrix, u_matrix.T)) |
|
|
|
|
|
def mesh_grid(kernel_size): |
|
"""Generate the mesh grid, centering at zero. |
|
|
|
Args: |
|
kernel_size (int): |
|
|
|
Returns: |
|
xy (ndarray): with the shape (kernel_size, kernel_size, 2) |
|
xx (ndarray): with the shape (kernel_size, kernel_size) |
|
yy (ndarray): with the shape (kernel_size, kernel_size) |
|
""" |
|
ax = np.arange(-kernel_size // 2 + 1., kernel_size // 2 + 1.) |
|
xx, yy = np.meshgrid(ax, ax) |
|
xy = np.hstack((xx.reshape((kernel_size * kernel_size, 1)), yy.reshape(kernel_size * kernel_size, |
|
1))).reshape(kernel_size, kernel_size, 2) |
|
return xy, xx, yy |
|
|
|
|
|
def pdf2(sigma_matrix, grid): |
|
"""Calculate PDF of the bivariate Gaussian distribution. |
|
|
|
Args: |
|
sigma_matrix (ndarray): with the shape (2, 2) |
|
grid (ndarray): generated by :func:`mesh_grid`, |
|
with the shape (K, K, 2), K is the kernel size. |
|
|
|
Returns: |
|
kernel (ndarrray): un-normalized kernel. |
|
""" |
|
inverse_sigma = np.linalg.inv(sigma_matrix) |
|
kernel = np.exp(-0.5 * np.sum(np.dot(grid, inverse_sigma) * grid, 2)) |
|
return kernel |
|
|
|
|
|
def cdf2(d_matrix, grid): |
|
"""Calculate the CDF of the standard bivariate Gaussian distribution. |
|
Used in skewed Gaussian distribution. |
|
|
|
Args: |
|
d_matrix (ndarrasy): skew matrix. |
|
grid (ndarray): generated by :func:`mesh_grid`, |
|
with the shape (K, K, 2), K is the kernel size. |
|
|
|
Returns: |
|
cdf (ndarray): skewed cdf. |
|
""" |
|
rv = multivariate_normal([0, 0], [[1, 0], [0, 1]]) |
|
grid = np.dot(grid, d_matrix) |
|
cdf = rv.cdf(grid) |
|
return cdf |
|
|
|
|
|
def bivariate_Gaussian(kernel_size, sig_x, sig_y, theta, grid=None, isotropic=True): |
|
"""Generate a bivariate isotropic or anisotropic Gaussian kernel. |
|
|
|
In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored. |
|
|
|
Args: |
|
kernel_size (int): |
|
sig_x (float): |
|
sig_y (float): |
|
theta (float): Radian measurement. |
|
grid (ndarray, optional): generated by :func:`mesh_grid`, |
|
with the shape (K, K, 2), K is the kernel size. Default: None |
|
isotropic (bool): |
|
|
|
Returns: |
|
kernel (ndarray): normalized kernel. |
|
""" |
|
if grid is None: |
|
grid, _, _ = mesh_grid(kernel_size) |
|
if isotropic: |
|
sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]]) |
|
else: |
|
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta) |
|
kernel = pdf2(sigma_matrix, grid) |
|
kernel = kernel / np.sum(kernel) |
|
return kernel |
|
|
|
|
|
def bivariate_generalized_Gaussian(kernel_size, sig_x, sig_y, theta, beta, grid=None, isotropic=True): |
|
"""Generate a bivariate generalized Gaussian kernel. |
|
|
|
``Paper: Parameter Estimation For Multivariate Generalized Gaussian Distributions`` |
|
|
|
In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored. |
|
|
|
Args: |
|
kernel_size (int): |
|
sig_x (float): |
|
sig_y (float): |
|
theta (float): Radian measurement. |
|
beta (float): shape parameter, beta = 1 is the normal distribution. |
|
grid (ndarray, optional): generated by :func:`mesh_grid`, |
|
with the shape (K, K, 2), K is the kernel size. Default: None |
|
|
|
Returns: |
|
kernel (ndarray): normalized kernel. |
|
""" |
|
if grid is None: |
|
grid, _, _ = mesh_grid(kernel_size) |
|
if isotropic: |
|
sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]]) |
|
else: |
|
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta) |
|
inverse_sigma = np.linalg.inv(sigma_matrix) |
|
kernel = np.exp(-0.5 * np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta)) |
|
kernel = kernel / np.sum(kernel) |
|
return kernel |
|
|
|
|
|
def bivariate_plateau(kernel_size, sig_x, sig_y, theta, beta, grid=None, isotropic=True): |
|
"""Generate a plateau-like anisotropic kernel. |
|
|
|
1 / (1+x^(beta)) |
|
|
|
Reference: https://stats.stackexchange.com/questions/203629/is-there-a-plateau-shaped-distribution |
|
|
|
In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored. |
|
|
|
Args: |
|
kernel_size (int): |
|
sig_x (float): |
|
sig_y (float): |
|
theta (float): Radian measurement. |
|
beta (float): shape parameter, beta = 1 is the normal distribution. |
|
grid (ndarray, optional): generated by :func:`mesh_grid`, |
|
with the shape (K, K, 2), K is the kernel size. Default: None |
|
|
|
Returns: |
|
kernel (ndarray): normalized kernel. |
|
""" |
|
if grid is None: |
|
grid, _, _ = mesh_grid(kernel_size) |
|
if isotropic: |
|
sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]]) |
|
else: |
|
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta) |
|
inverse_sigma = np.linalg.inv(sigma_matrix) |
|
kernel = np.reciprocal(np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta) + 1) |
|
kernel = kernel / np.sum(kernel) |
|
return kernel |
|
|
|
|
|
def random_bivariate_Gaussian(kernel_size, |
|
sigma_x_range, |
|
sigma_y_range, |
|
rotation_range, |
|
noise_range=None, |
|
isotropic=True, |
|
return_sigma=False): |
|
"""Randomly generate bivariate isotropic or anisotropic Gaussian kernels. |
|
|
|
In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored. |
|
|
|
Args: |
|
kernel_size (int): |
|
sigma_x_range (tuple): [0.6, 5] |
|
sigma_y_range (tuple): [0.6, 5] |
|
rotation range (tuple): [-math.pi, math.pi] |
|
noise_range(tuple, optional): multiplicative kernel noise, |
|
[0.75, 1.25]. Default: None |
|
|
|
Returns: |
|
kernel (ndarray): |
|
""" |
|
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.' |
|
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.' |
|
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1]) |
|
if isotropic is False: |
|
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.' |
|
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.' |
|
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1]) |
|
rotation = np.random.uniform(rotation_range[0], rotation_range[1]) |
|
else: |
|
sigma_y = sigma_x |
|
rotation = 0 |
|
|
|
kernel = bivariate_Gaussian(kernel_size, sigma_x, sigma_y, rotation, isotropic=isotropic) |
|
|
|
|
|
if noise_range is not None: |
|
assert noise_range[0] < noise_range[1], 'Wrong noise range.' |
|
noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape) |
|
kernel = kernel * noise |
|
kernel = kernel / np.sum(kernel) |
|
if not return_sigma: |
|
return kernel |
|
else: |
|
return kernel, [sigma_x, sigma_y] |
|
|
|
|
|
def random_bivariate_generalized_Gaussian(kernel_size, |
|
sigma_x_range, |
|
sigma_y_range, |
|
rotation_range, |
|
beta_range, |
|
noise_range=None, |
|
isotropic=True, |
|
return_sigma=False): |
|
"""Randomly generate bivariate generalized Gaussian kernels. |
|
|
|
In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored. |
|
|
|
Args: |
|
kernel_size (int): |
|
sigma_x_range (tuple): [0.6, 5] |
|
sigma_y_range (tuple): [0.6, 5] |
|
rotation range (tuple): [-math.pi, math.pi] |
|
beta_range (tuple): [0.5, 8] |
|
noise_range(tuple, optional): multiplicative kernel noise, |
|
[0.75, 1.25]. Default: None |
|
|
|
Returns: |
|
kernel (ndarray): |
|
""" |
|
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.' |
|
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.' |
|
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1]) |
|
if isotropic is False: |
|
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.' |
|
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.' |
|
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1]) |
|
rotation = np.random.uniform(rotation_range[0], rotation_range[1]) |
|
else: |
|
sigma_y = sigma_x |
|
rotation = 0 |
|
|
|
|
|
if np.random.uniform() < 0.5: |
|
beta = np.random.uniform(beta_range[0], 1) |
|
else: |
|
beta = np.random.uniform(1, beta_range[1]) |
|
|
|
kernel = bivariate_generalized_Gaussian(kernel_size, sigma_x, sigma_y, rotation, beta, isotropic=isotropic) |
|
|
|
|
|
if noise_range is not None: |
|
assert noise_range[0] < noise_range[1], 'Wrong noise range.' |
|
noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape) |
|
kernel = kernel * noise |
|
kernel = kernel / np.sum(kernel) |
|
if not return_sigma: |
|
return kernel |
|
else: |
|
return kernel, [sigma_x, sigma_y] |
|
|
|
|
|
def random_bivariate_plateau(kernel_size, |
|
sigma_x_range, |
|
sigma_y_range, |
|
rotation_range, |
|
beta_range, |
|
noise_range=None, |
|
isotropic=True, |
|
return_sigma=False): |
|
"""Randomly generate bivariate plateau kernels. |
|
|
|
In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored. |
|
|
|
Args: |
|
kernel_size (int): |
|
sigma_x_range (tuple): [0.6, 5] |
|
sigma_y_range (tuple): [0.6, 5] |
|
rotation range (tuple): [-math.pi/2, math.pi/2] |
|
beta_range (tuple): [1, 4] |
|
noise_range(tuple, optional): multiplicative kernel noise, |
|
[0.75, 1.25]. Default: None |
|
|
|
Returns: |
|
kernel (ndarray): |
|
""" |
|
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.' |
|
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.' |
|
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1]) |
|
if isotropic is False: |
|
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.' |
|
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.' |
|
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1]) |
|
rotation = np.random.uniform(rotation_range[0], rotation_range[1]) |
|
else: |
|
sigma_y = sigma_x |
|
rotation = 0 |
|
|
|
|
|
if np.random.uniform() < 0.5: |
|
beta = np.random.uniform(beta_range[0], 1) |
|
else: |
|
beta = np.random.uniform(1, beta_range[1]) |
|
|
|
kernel = bivariate_plateau(kernel_size, sigma_x, sigma_y, rotation, beta, isotropic=isotropic) |
|
|
|
if noise_range is not None: |
|
assert noise_range[0] < noise_range[1], 'Wrong noise range.' |
|
noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape) |
|
kernel = kernel * noise |
|
kernel = kernel / np.sum(kernel) |
|
|
|
if not return_sigma: |
|
return kernel |
|
else: |
|
return kernel, [sigma_x, sigma_y] |
|
|
|
|
|
def random_mixed_kernels(kernel_list, |
|
kernel_prob, |
|
kernel_size=21, |
|
sigma_x_range=(0.6, 5), |
|
sigma_y_range=(0.6, 5), |
|
rotation_range=(-math.pi, math.pi), |
|
betag_range=(0.5, 8), |
|
betap_range=(0.5, 8), |
|
noise_range=None, |
|
return_sigma=False): |
|
"""Randomly generate mixed kernels. |
|
|
|
Args: |
|
kernel_list (tuple): a list name of kernel types, |
|
support ['iso', 'aniso', 'skew', 'generalized', 'plateau_iso', |
|
'plateau_aniso'] |
|
kernel_prob (tuple): corresponding kernel probability for each |
|
kernel type |
|
kernel_size (int): |
|
sigma_x_range (tuple): [0.6, 5] |
|
sigma_y_range (tuple): [0.6, 5] |
|
rotation range (tuple): [-math.pi, math.pi] |
|
beta_range (tuple): [0.5, 8] |
|
noise_range(tuple, optional): multiplicative kernel noise, |
|
[0.75, 1.25]. Default: None |
|
|
|
Returns: |
|
kernel (ndarray): |
|
""" |
|
kernel_type = random.choices(kernel_list, kernel_prob)[0] |
|
if not return_sigma: |
|
if kernel_type == 'iso': |
|
kernel = random_bivariate_Gaussian( |
|
kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=True, return_sigma=return_sigma) |
|
elif kernel_type == 'aniso': |
|
kernel = random_bivariate_Gaussian( |
|
kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=False, return_sigma=return_sigma) |
|
elif kernel_type == 'generalized_iso': |
|
kernel = random_bivariate_generalized_Gaussian( |
|
kernel_size, |
|
sigma_x_range, |
|
sigma_y_range, |
|
rotation_range, |
|
betag_range, |
|
noise_range=noise_range, |
|
isotropic=True, |
|
return_sigma=return_sigma) |
|
elif kernel_type == 'generalized_aniso': |
|
kernel = random_bivariate_generalized_Gaussian( |
|
kernel_size, |
|
sigma_x_range, |
|
sigma_y_range, |
|
rotation_range, |
|
betag_range, |
|
noise_range=noise_range, |
|
isotropic=False, |
|
return_sigma=return_sigma) |
|
elif kernel_type == 'plateau_iso': |
|
kernel = random_bivariate_plateau( |
|
kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=True, return_sigma=return_sigma) |
|
elif kernel_type == 'plateau_aniso': |
|
kernel = random_bivariate_plateau( |
|
kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=False, return_sigma=return_sigma) |
|
return kernel |
|
else: |
|
if kernel_type == 'iso': |
|
kernel, sigma_list = random_bivariate_Gaussian( |
|
kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=True, return_sigma=return_sigma) |
|
elif kernel_type == 'aniso': |
|
kernel, sigma_list = random_bivariate_Gaussian( |
|
kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=False, return_sigma=return_sigma) |
|
elif kernel_type == 'generalized_iso': |
|
kernel, sigma_list = random_bivariate_generalized_Gaussian( |
|
kernel_size, |
|
sigma_x_range, |
|
sigma_y_range, |
|
rotation_range, |
|
betag_range, |
|
noise_range=noise_range, |
|
isotropic=True, |
|
return_sigma=return_sigma) |
|
elif kernel_type == 'generalized_aniso': |
|
kernel, sigma_list = random_bivariate_generalized_Gaussian( |
|
kernel_size, |
|
sigma_x_range, |
|
sigma_y_range, |
|
rotation_range, |
|
betag_range, |
|
noise_range=noise_range, |
|
isotropic=False, |
|
return_sigma=return_sigma) |
|
elif kernel_type == 'plateau_iso': |
|
kernel, sigma_list = random_bivariate_plateau( |
|
kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=True, return_sigma=return_sigma) |
|
elif kernel_type == 'plateau_aniso': |
|
kernel, sigma_list = random_bivariate_plateau( |
|
kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=False, return_sigma=return_sigma) |
|
return kernel, sigma_list |
|
|
|
|
|
np.seterr(divide='ignore', invalid='ignore') |
|
|
|
|
|
def circular_lowpass_kernel(cutoff, kernel_size, pad_to=0): |
|
"""2D sinc filter |
|
|
|
Reference: https://dsp.stackexchange.com/questions/58301/2-d-circularly-symmetric-low-pass-filter |
|
|
|
Args: |
|
cutoff (float): cutoff frequency in radians (pi is max) |
|
kernel_size (int): horizontal and vertical size, must be odd. |
|
pad_to (int): pad kernel size to desired size, must be odd or zero. |
|
""" |
|
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.' |
|
kernel = np.fromfunction( |
|
lambda x, y: cutoff * special.j1(cutoff * np.sqrt( |
|
(x - (kernel_size - 1) / 2)**2 + (y - (kernel_size - 1) / 2)**2)) / (2 * np.pi * np.sqrt( |
|
(x - (kernel_size - 1) / 2)**2 + (y - (kernel_size - 1) / 2)**2)), [kernel_size, kernel_size]) |
|
kernel[(kernel_size - 1) // 2, (kernel_size - 1) // 2] = cutoff**2 / (4 * np.pi) |
|
kernel = kernel / np.sum(kernel) |
|
if pad_to > kernel_size: |
|
pad_size = (pad_to - kernel_size) // 2 |
|
kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size))) |
|
return kernel |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate_gaussian_noise(img, sigma=10, gray_noise=False): |
|
"""Generate Gaussian noise. |
|
|
|
Args: |
|
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32. |
|
sigma (float): Noise scale (measured in range 255). Default: 10. |
|
|
|
Returns: |
|
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1], |
|
float32. |
|
""" |
|
if gray_noise: |
|
noise = np.float32(np.random.randn(*(img.shape[0:2]))) * sigma / 255. |
|
noise = np.expand_dims(noise, axis=2).repeat(3, axis=2) |
|
else: |
|
noise = np.float32(np.random.randn(*(img.shape))) * sigma / 255. |
|
return noise |
|
|
|
|
|
def add_gaussian_noise(img, sigma=10, clip=True, rounds=False, gray_noise=False): |
|
"""Add Gaussian noise. |
|
|
|
Args: |
|
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32. |
|
sigma (float): Noise scale (measured in range 255). Default: 10. |
|
|
|
Returns: |
|
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1], |
|
float32. |
|
""" |
|
noise = generate_gaussian_noise(img, sigma, gray_noise) |
|
out = img + noise |
|
if clip and rounds: |
|
out = np.clip((out * 255.0).round(), 0, 255) / 255. |
|
elif clip: |
|
out = np.clip(out, 0, 1) |
|
elif rounds: |
|
out = (out * 255.0).round() / 255. |
|
return out |
|
|
|
|
|
def generate_gaussian_noise_pt(img, sigma=10, gray_noise=0): |
|
"""Add Gaussian noise (PyTorch version). |
|
|
|
Args: |
|
img (Tensor): Shape (b, c, h, w), range[0, 1], float32. |
|
scale (float | Tensor): Noise scale. Default: 1.0. |
|
|
|
Returns: |
|
(Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1], |
|
float32. |
|
""" |
|
b, _, h, w = img.size() |
|
if not isinstance(sigma, (float, int)): |
|
sigma = sigma.view(img.size(0), 1, 1, 1) |
|
if isinstance(gray_noise, (float, int)): |
|
cal_gray_noise = gray_noise > 0 |
|
else: |
|
gray_noise = gray_noise.view(b, 1, 1, 1) |
|
cal_gray_noise = torch.sum(gray_noise) > 0 |
|
|
|
if cal_gray_noise: |
|
noise_gray = torch.randn(*img.size()[2:4], dtype=img.dtype, device=img.device) * sigma / 255. |
|
noise_gray = noise_gray.view(b, 1, h, w) |
|
|
|
|
|
noise = torch.randn(*img.size(), dtype=img.dtype, device=img.device) * sigma / 255. |
|
|
|
if cal_gray_noise: |
|
noise = noise * (1 - gray_noise) + noise_gray * gray_noise |
|
return noise |
|
|
|
|
|
def add_gaussian_noise_pt(img, sigma=10, gray_noise=0, clip=True, rounds=False): |
|
"""Add Gaussian noise (PyTorch version). |
|
|
|
Args: |
|
img (Tensor): Shape (b, c, h, w), range[0, 1], float32. |
|
scale (float | Tensor): Noise scale. Default: 1.0. |
|
|
|
Returns: |
|
(Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1], |
|
float32. |
|
""" |
|
noise = generate_gaussian_noise_pt(img, sigma, gray_noise) |
|
out = img + noise |
|
if clip and rounds: |
|
out = torch.clamp((out * 255.0).round(), 0, 255) / 255. |
|
elif clip: |
|
out = torch.clamp(out, 0, 1) |
|
elif rounds: |
|
out = (out * 255.0).round() / 255. |
|
return out |
|
|
|
|
|
|
|
def random_generate_gaussian_noise(img, sigma_range=(0, 10), gray_prob=0, return_sigma=False): |
|
sigma = np.random.uniform(sigma_range[0], sigma_range[1]) |
|
if np.random.uniform() < gray_prob: |
|
gray_noise = True |
|
else: |
|
gray_noise = False |
|
if return_sigma: |
|
return generate_gaussian_noise(img, sigma, gray_noise), sigma |
|
else: |
|
return generate_gaussian_noise(img, sigma, gray_noise) |
|
|
|
|
|
def random_add_gaussian_noise(img, sigma_range=(0, 1.0), gray_prob=0, clip=True, rounds=False, return_sigma=False): |
|
if return_sigma: |
|
noise, sigma = random_generate_gaussian_noise(img, sigma_range, gray_prob, return_sigma=return_sigma) |
|
else: |
|
noise = random_generate_gaussian_noise(img, sigma_range, gray_prob, return_sigma=return_sigma) |
|
out = img + noise |
|
if clip and rounds: |
|
out = np.clip((out * 255.0).round(), 0, 255) / 255. |
|
elif clip: |
|
out = np.clip(out, 0, 1) |
|
elif rounds: |
|
out = (out * 255.0).round() / 255. |
|
if return_sigma: |
|
return out, sigma |
|
else: |
|
return out |
|
|
|
|
|
def random_generate_gaussian_noise_pt(img, sigma_range=(0, 10), gray_prob=0): |
|
sigma = torch.rand( |
|
img.size(0), dtype=img.dtype, device=img.device) * (sigma_range[1] - sigma_range[0]) + sigma_range[0] |
|
gray_noise = torch.rand(img.size(0), dtype=img.dtype, device=img.device) |
|
gray_noise = (gray_noise < gray_prob).float() |
|
return generate_gaussian_noise_pt(img, sigma, gray_noise) |
|
|
|
|
|
def random_add_gaussian_noise_pt(img, sigma_range=(0, 1.0), gray_prob=0, clip=True, rounds=False): |
|
noise = random_generate_gaussian_noise_pt(img, sigma_range, gray_prob) |
|
out = img + noise |
|
if clip and rounds: |
|
out = torch.clamp((out * 255.0).round(), 0, 255) / 255. |
|
elif clip: |
|
out = torch.clamp(out, 0, 1) |
|
elif rounds: |
|
out = (out * 255.0).round() / 255. |
|
return out |
|
|
|
|
|
|
|
|
|
def generate_poisson_noise(img, scale=1.0, gray_noise=False): |
|
"""Generate poisson noise. |
|
|
|
Reference: https://github.com/scikit-image/scikit-image/blob/main/skimage/util/noise.py#L37-L219 |
|
|
|
Args: |
|
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32. |
|
scale (float): Noise scale. Default: 1.0. |
|
gray_noise (bool): Whether generate gray noise. Default: False. |
|
|
|
Returns: |
|
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1], |
|
float32. |
|
""" |
|
if gray_noise: |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
|
|
|
img = np.clip((img * 255.0).round(), 0, 255) / 255. |
|
vals = len(np.unique(img)) |
|
vals = 2**np.ceil(np.log2(vals)) |
|
out = np.float32(np.random.poisson(img * vals) / float(vals)) |
|
noise = out - img |
|
if gray_noise: |
|
noise = np.repeat(noise[:, :, np.newaxis], 3, axis=2) |
|
return noise * scale |
|
|
|
|
|
def add_poisson_noise(img, scale=1.0, clip=True, rounds=False, gray_noise=False): |
|
"""Add poisson noise. |
|
|
|
Args: |
|
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32. |
|
scale (float): Noise scale. Default: 1.0. |
|
gray_noise (bool): Whether generate gray noise. Default: False. |
|
|
|
Returns: |
|
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1], |
|
float32. |
|
""" |
|
noise = generate_poisson_noise(img, scale, gray_noise) |
|
out = img + noise |
|
if clip and rounds: |
|
out = np.clip((out * 255.0).round(), 0, 255) / 255. |
|
elif clip: |
|
out = np.clip(out, 0, 1) |
|
elif rounds: |
|
out = (out * 255.0).round() / 255. |
|
return out |
|
|
|
|
|
def generate_poisson_noise_pt(img, scale=1.0, gray_noise=0): |
|
"""Generate a batch of poisson noise (PyTorch version) |
|
|
|
Args: |
|
img (Tensor): Input image, shape (b, c, h, w), range [0, 1], float32. |
|
scale (float | Tensor): Noise scale. Number or Tensor with shape (b). |
|
Default: 1.0. |
|
gray_noise (float | Tensor): 0-1 number or Tensor with shape (b). |
|
0 for False, 1 for True. Default: 0. |
|
|
|
Returns: |
|
(Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1], |
|
float32. |
|
""" |
|
b, _, h, w = img.size() |
|
if isinstance(gray_noise, (float, int)): |
|
cal_gray_noise = gray_noise > 0 |
|
else: |
|
gray_noise = gray_noise.view(b, 1, 1, 1) |
|
cal_gray_noise = torch.sum(gray_noise) > 0 |
|
if cal_gray_noise: |
|
img_gray = rgb_to_grayscale(img, num_output_channels=1) |
|
|
|
img_gray = torch.clamp((img_gray * 255.0).round(), 0, 255) / 255. |
|
|
|
vals_list = [len(torch.unique(img_gray[i, :, :, :])) for i in range(b)] |
|
vals_list = [2**np.ceil(np.log2(vals)) for vals in vals_list] |
|
vals = img_gray.new_tensor(vals_list).view(b, 1, 1, 1) |
|
out = torch.poisson(img_gray * vals) / vals |
|
noise_gray = out - img_gray |
|
noise_gray = noise_gray.expand(b, 3, h, w) |
|
|
|
|
|
|
|
img = torch.clamp((img * 255.0).round(), 0, 255) / 255. |
|
|
|
vals_list = [len(torch.unique(img[i, :, :, :])) for i in range(b)] |
|
vals_list = [2**np.ceil(np.log2(vals)) for vals in vals_list] |
|
vals = img.new_tensor(vals_list).view(b, 1, 1, 1) |
|
out = torch.poisson(img * vals) / vals |
|
noise = out - img |
|
if cal_gray_noise: |
|
noise = noise * (1 - gray_noise) + noise_gray * gray_noise |
|
if not isinstance(scale, (float, int)): |
|
scale = scale.view(b, 1, 1, 1) |
|
return noise * scale |
|
|
|
|
|
def add_poisson_noise_pt(img, scale=1.0, clip=True, rounds=False, gray_noise=0): |
|
"""Add poisson noise to a batch of images (PyTorch version). |
|
|
|
Args: |
|
img (Tensor): Input image, shape (b, c, h, w), range [0, 1], float32. |
|
scale (float | Tensor): Noise scale. Number or Tensor with shape (b). |
|
Default: 1.0. |
|
gray_noise (float | Tensor): 0-1 number or Tensor with shape (b). |
|
0 for False, 1 for True. Default: 0. |
|
|
|
Returns: |
|
(Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1], |
|
float32. |
|
""" |
|
noise = generate_poisson_noise_pt(img, scale, gray_noise) |
|
out = img + noise |
|
if clip and rounds: |
|
out = torch.clamp((out * 255.0).round(), 0, 255) / 255. |
|
elif clip: |
|
out = torch.clamp(out, 0, 1) |
|
elif rounds: |
|
out = (out * 255.0).round() / 255. |
|
return out |
|
|
|
|
|
|
|
|
|
|
|
def random_generate_poisson_noise(img, scale_range=(0, 1.0), gray_prob=0): |
|
scale = np.random.uniform(scale_range[0], scale_range[1]) |
|
if np.random.uniform() < gray_prob: |
|
gray_noise = True |
|
else: |
|
gray_noise = False |
|
return generate_poisson_noise(img, scale, gray_noise) |
|
|
|
|
|
def random_add_poisson_noise(img, scale_range=(0, 1.0), gray_prob=0, clip=True, rounds=False): |
|
noise = random_generate_poisson_noise(img, scale_range, gray_prob) |
|
out = img + noise |
|
if clip and rounds: |
|
out = np.clip((out * 255.0).round(), 0, 255) / 255. |
|
elif clip: |
|
out = np.clip(out, 0, 1) |
|
elif rounds: |
|
out = (out * 255.0).round() / 255. |
|
return out |
|
|
|
|
|
def random_generate_poisson_noise_pt(img, scale_range=(0, 1.0), gray_prob=0): |
|
scale = torch.rand( |
|
img.size(0), dtype=img.dtype, device=img.device) * (scale_range[1] - scale_range[0]) + scale_range[0] |
|
gray_noise = torch.rand(img.size(0), dtype=img.dtype, device=img.device) |
|
gray_noise = (gray_noise < gray_prob).float() |
|
return generate_poisson_noise_pt(img, scale, gray_noise) |
|
|
|
|
|
def random_add_poisson_noise_pt(img, scale_range=(0, 1.0), gray_prob=0, clip=True, rounds=False): |
|
noise = random_generate_poisson_noise_pt(img, scale_range, gray_prob) |
|
out = img + noise |
|
if clip and rounds: |
|
out = torch.clamp((out * 255.0).round(), 0, 255) / 255. |
|
elif clip: |
|
out = torch.clamp(out, 0, 1) |
|
elif rounds: |
|
out = (out * 255.0).round() / 255. |
|
return out |
|
|
|
|
|
|
|
def random_add_speckle_noise(imgs, speckle_std): |
|
std_range = speckle_std |
|
std_l = std_range[0] |
|
std_r = std_range[1] |
|
mean=0 |
|
std=random.uniform(std_l/255.,std_r/255.) |
|
|
|
outputs = [] |
|
for img in imgs: |
|
gauss=np.random.normal(loc=mean,scale=std,size=img.shape) |
|
noisy=img+gauss*img |
|
noisy=np.clip(noisy,0,1).astype(np.float32) |
|
|
|
outputs.append(noisy) |
|
|
|
return outputs |
|
|
|
|
|
def random_add_speckle_noise_pt(img, speckle_std): |
|
std_range = speckle_std |
|
std_l = std_range[0] |
|
std_r = std_range[1] |
|
mean=0 |
|
std=random.uniform(std_l/255.,std_r/255.) |
|
gauss=torch.normal(mean=mean,std=std,size=img.size()).to(img.device) |
|
noisy=img+gauss*img |
|
noisy=torch.clamp(noisy,0,1) |
|
return noisy |
|
|
|
|
|
|
|
def random_add_saltpepper_noise(imgs, saltpepper_amount, saltpepper_svsp): |
|
p_range = saltpepper_amount |
|
p = random.uniform(p_range[0], p_range[1]) |
|
q_range = saltpepper_svsp |
|
q = random.uniform(q_range[0], q_range[1]) |
|
|
|
outputs = [] |
|
for img in imgs: |
|
out = img.copy() |
|
flipped = np.random.choice([True, False], size=img.shape, |
|
p=[p, 1 - p]) |
|
salted = np.random.choice([True, False], size=img.shape, |
|
p=[q, 1 - q]) |
|
peppered = ~salted |
|
out[flipped & salted] = 1 |
|
out[flipped & peppered] = 0. |
|
noisy = np.clip(out, 0, 1).astype(np.float32) |
|
|
|
outputs.append(noisy) |
|
|
|
return outputs |
|
|
|
def random_add_saltpepper_noise_pt(imgs, saltpepper_amount, saltpepper_svsp): |
|
p_range = saltpepper_amount |
|
p = random.uniform(p_range[0], p_range[1]) |
|
q_range = saltpepper_svsp |
|
q = random.uniform(q_range[0], q_range[1]) |
|
|
|
imgs = imgs.permute(0,2,3,1) |
|
|
|
outputs = [] |
|
for i in range(imgs.size(0)): |
|
img = imgs[i] |
|
out = img.clone() |
|
flipped = np.random.choice([True, False], size=img.shape, |
|
p=[p, 1 - p]) |
|
salted = np.random.choice([True, False], size=img.shape, |
|
p=[q, 1 - q]) |
|
peppered = ~salted |
|
temp = flipped & salted |
|
out[flipped & salted] = 1 |
|
out[flipped & peppered] = 0. |
|
noisy = torch.clamp(out, 0, 1) |
|
|
|
outputs.append(noisy.permute(2,0,1)) |
|
if len(outputs)>1: |
|
return torch.cat(outputs, dim=0) |
|
else: |
|
return outputs[0].unsqueeze(0) |
|
|
|
|
|
|
|
def random_add_screen_noise(imgs, linewidth, space): |
|
|
|
linewidth = linewidth |
|
linewidth = int(np.random.uniform(linewidth[0], linewidth[1])) |
|
space = space |
|
space = int(np.random.uniform(space[0], space[1])) |
|
center_color = [213,230,230] |
|
outputs = [] |
|
for img in imgs: |
|
noise = img.copy() |
|
|
|
tmp_mask = np.zeros((img.shape[1], img.shape[0]), dtype=np.float32) |
|
for i in range(0, img.shape[0], int((space+linewidth))): |
|
tmp_mask[:, i:(i+linewidth)] = 1 |
|
colour_masks = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.float32) |
|
colour_masks[:,:,0] = (center_color[0] + np.random.uniform(-20, 20))/255. |
|
colour_masks[:,:,1] = (center_color[1] + np.random.uniform(0, 20))/255. |
|
colour_masks[:,:,2] = (center_color[2] + np.random.uniform(0, 20))/255. |
|
noise_color = cv2.addWeighted(noise, 0.6, colour_masks, 0.4, 0.0) |
|
noise = noise*(1-(tmp_mask[:,:,np.newaxis])) + noise_color*(tmp_mask[:,:,np.newaxis]) |
|
|
|
outputs.append(noise) |
|
|
|
return outputs |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def add_jpg_compression(img, quality=90): |
|
"""Add JPG compression artifacts. |
|
|
|
Args: |
|
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32. |
|
quality (float): JPG compression quality. 0 for lowest quality, 100 for |
|
best quality. Default: 90. |
|
|
|
Returns: |
|
(Numpy array): Returned image after JPG, shape (h, w, c), range[0, 1], |
|
float32. |
|
""" |
|
img = np.clip(img, 0, 1) |
|
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), int(quality)] |
|
_, encimg = cv2.imencode('.jpg', img * 255., encode_param) |
|
img = np.float32(cv2.imdecode(encimg, 1)) / 255. |
|
return img |
|
|
|
|
|
def random_add_jpg_compression(img, quality_range=(90, 100), return_q=False): |
|
"""Randomly add JPG compression artifacts. |
|
|
|
Args: |
|
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32. |
|
quality_range (tuple[float] | list[float]): JPG compression quality |
|
range. 0 for lowest quality, 100 for best quality. |
|
Default: (90, 100). |
|
|
|
Returns: |
|
(Numpy array): Returned image after JPG, shape (h, w, c), range[0, 1], |
|
float32. |
|
""" |
|
quality = np.random.uniform(quality_range[0], quality_range[1]) |
|
if return_q: |
|
return add_jpg_compression(img, quality), quality |
|
else: |
|
return add_jpg_compression(img, quality) |
|
|