|
import os |
|
from collections.abc import Generator |
|
|
|
import pytest |
|
|
|
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta |
|
from core.model_runtime.entities.message_entities import ( |
|
AssistantPromptMessage, |
|
PromptMessageTool, |
|
SystemPromptMessage, |
|
UserPromptMessage, |
|
) |
|
from core.model_runtime.entities.model_entities import AIModelEntity |
|
from core.model_runtime.errors.validate import CredentialsValidateFailedError |
|
from core.model_runtime.model_providers.chatglm.llm.llm import ChatGLMLargeLanguageModel |
|
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock |
|
|
|
|
|
def test_predefined_models(): |
|
model = ChatGLMLargeLanguageModel() |
|
model_schemas = model.predefined_models() |
|
assert len(model_schemas) >= 1 |
|
assert isinstance(model_schemas[0], AIModelEntity) |
|
|
|
|
|
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True) |
|
def test_validate_credentials_for_chat_model(setup_openai_mock): |
|
model = ChatGLMLargeLanguageModel() |
|
|
|
with pytest.raises(CredentialsValidateFailedError): |
|
model.validate_credentials(model="chatglm2-6b", credentials={"api_base": "invalid_key"}) |
|
|
|
model.validate_credentials(model="chatglm2-6b", credentials={"api_base": os.environ.get("CHATGLM_API_BASE")}) |
|
|
|
|
|
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True) |
|
def test_invoke_model(setup_openai_mock): |
|
model = ChatGLMLargeLanguageModel() |
|
|
|
response = model.invoke( |
|
model="chatglm2-6b", |
|
credentials={"api_base": os.environ.get("CHATGLM_API_BASE")}, |
|
prompt_messages=[ |
|
SystemPromptMessage( |
|
content="You are a helpful AI assistant.", |
|
), |
|
UserPromptMessage(content="Hello World!"), |
|
], |
|
model_parameters={ |
|
"temperature": 0.7, |
|
"top_p": 1.0, |
|
}, |
|
stop=["you"], |
|
user="abc-123", |
|
stream=False, |
|
) |
|
|
|
assert isinstance(response, LLMResult) |
|
assert len(response.message.content) > 0 |
|
assert response.usage.total_tokens > 0 |
|
|
|
|
|
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True) |
|
def test_invoke_stream_model(setup_openai_mock): |
|
model = ChatGLMLargeLanguageModel() |
|
|
|
response = model.invoke( |
|
model="chatglm2-6b", |
|
credentials={"api_base": os.environ.get("CHATGLM_API_BASE")}, |
|
prompt_messages=[ |
|
SystemPromptMessage( |
|
content="You are a helpful AI assistant.", |
|
), |
|
UserPromptMessage(content="Hello World!"), |
|
], |
|
model_parameters={ |
|
"temperature": 0.7, |
|
"top_p": 1.0, |
|
}, |
|
stop=["you"], |
|
stream=True, |
|
user="abc-123", |
|
) |
|
|
|
assert isinstance(response, Generator) |
|
for chunk in response: |
|
assert isinstance(chunk, LLMResultChunk) |
|
assert isinstance(chunk.delta, LLMResultChunkDelta) |
|
assert isinstance(chunk.delta.message, AssistantPromptMessage) |
|
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True |
|
|
|
|
|
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True) |
|
def test_invoke_stream_model_with_functions(setup_openai_mock): |
|
model = ChatGLMLargeLanguageModel() |
|
|
|
response = model.invoke( |
|
model="chatglm3-6b", |
|
credentials={"api_base": os.environ.get("CHATGLM_API_BASE")}, |
|
prompt_messages=[ |
|
SystemPromptMessage( |
|
content="你是一个天气机器人,你不知道今天的天气怎么样,你需要通过调用一个函数来获取天气信息。" |
|
), |
|
UserPromptMessage(content="波士顿天气如何?"), |
|
], |
|
model_parameters={ |
|
"temperature": 0, |
|
"top_p": 1.0, |
|
}, |
|
stop=["you"], |
|
user="abc-123", |
|
stream=True, |
|
tools=[ |
|
PromptMessageTool( |
|
name="get_current_weather", |
|
description="Get the current weather in a given location", |
|
parameters={ |
|
"type": "object", |
|
"properties": { |
|
"location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"}, |
|
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, |
|
}, |
|
"required": ["location"], |
|
}, |
|
) |
|
], |
|
) |
|
|
|
assert isinstance(response, Generator) |
|
|
|
call: LLMResultChunk = None |
|
chunks = [] |
|
|
|
for chunk in response: |
|
chunks.append(chunk) |
|
assert isinstance(chunk, LLMResultChunk) |
|
assert isinstance(chunk.delta, LLMResultChunkDelta) |
|
assert isinstance(chunk.delta.message, AssistantPromptMessage) |
|
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True |
|
|
|
if chunk.delta.message.tool_calls and len(chunk.delta.message.tool_calls) > 0: |
|
call = chunk |
|
break |
|
|
|
assert call is not None |
|
assert call.delta.message.tool_calls[0].function.name == "get_current_weather" |
|
|
|
|
|
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True) |
|
def test_invoke_model_with_functions(setup_openai_mock): |
|
model = ChatGLMLargeLanguageModel() |
|
|
|
response = model.invoke( |
|
model="chatglm3-6b", |
|
credentials={"api_base": os.environ.get("CHATGLM_API_BASE")}, |
|
prompt_messages=[UserPromptMessage(content="What is the weather like in San Francisco?")], |
|
model_parameters={ |
|
"temperature": 0.7, |
|
"top_p": 1.0, |
|
}, |
|
stop=["you"], |
|
user="abc-123", |
|
stream=False, |
|
tools=[ |
|
PromptMessageTool( |
|
name="get_current_weather", |
|
description="Get the current weather in a given location", |
|
parameters={ |
|
"type": "object", |
|
"properties": { |
|
"location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"}, |
|
"unit": {"type": "string", "enum": ["c", "f"]}, |
|
}, |
|
"required": ["location"], |
|
}, |
|
) |
|
], |
|
) |
|
|
|
assert isinstance(response, LLMResult) |
|
assert len(response.message.content) > 0 |
|
assert response.usage.total_tokens > 0 |
|
assert response.message.tool_calls[0].function.name == "get_current_weather" |
|
|
|
|
|
def test_get_num_tokens(): |
|
model = ChatGLMLargeLanguageModel() |
|
|
|
num_tokens = model.get_num_tokens( |
|
model="chatglm2-6b", |
|
credentials={"api_base": os.environ.get("CHATGLM_API_BASE")}, |
|
prompt_messages=[ |
|
SystemPromptMessage( |
|
content="You are a helpful AI assistant.", |
|
), |
|
UserPromptMessage(content="Hello World!"), |
|
], |
|
tools=[ |
|
PromptMessageTool( |
|
name="get_current_weather", |
|
description="Get the current weather in a given location", |
|
parameters={ |
|
"type": "object", |
|
"properties": { |
|
"location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"}, |
|
"unit": {"type": "string", "enum": ["c", "f"]}, |
|
}, |
|
"required": ["location"], |
|
}, |
|
) |
|
], |
|
) |
|
|
|
assert isinstance(num_tokens, int) |
|
assert num_tokens == 77 |
|
|
|
num_tokens = model.get_num_tokens( |
|
model="chatglm2-6b", |
|
credentials={"api_base": os.environ.get("CHATGLM_API_BASE")}, |
|
prompt_messages=[ |
|
SystemPromptMessage( |
|
content="You are a helpful AI assistant.", |
|
), |
|
UserPromptMessage(content="Hello World!"), |
|
], |
|
) |
|
|
|
assert isinstance(num_tokens, int) |
|
assert num_tokens == 21 |
|
|