Severian's picture
initial commit
a8b3f00
raw
history blame
7.95 kB
import os
from collections.abc import Generator
import pytest
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessageTool,
SystemPromptMessage,
UserPromptMessage,
)
from core.model_runtime.entities.model_entities import AIModelEntity
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.chatglm.llm.llm import ChatGLMLargeLanguageModel
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock
def test_predefined_models():
model = ChatGLMLargeLanguageModel()
model_schemas = model.predefined_models()
assert len(model_schemas) >= 1
assert isinstance(model_schemas[0], AIModelEntity)
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
def test_validate_credentials_for_chat_model(setup_openai_mock):
model = ChatGLMLargeLanguageModel()
with pytest.raises(CredentialsValidateFailedError):
model.validate_credentials(model="chatglm2-6b", credentials={"api_base": "invalid_key"})
model.validate_credentials(model="chatglm2-6b", credentials={"api_base": os.environ.get("CHATGLM_API_BASE")})
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
def test_invoke_model(setup_openai_mock):
model = ChatGLMLargeLanguageModel()
response = model.invoke(
model="chatglm2-6b",
credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},
prompt_messages=[
SystemPromptMessage(
content="You are a helpful AI assistant.",
),
UserPromptMessage(content="Hello World!"),
],
model_parameters={
"temperature": 0.7,
"top_p": 1.0,
},
stop=["you"],
user="abc-123",
stream=False,
)
assert isinstance(response, LLMResult)
assert len(response.message.content) > 0
assert response.usage.total_tokens > 0
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
def test_invoke_stream_model(setup_openai_mock):
model = ChatGLMLargeLanguageModel()
response = model.invoke(
model="chatglm2-6b",
credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},
prompt_messages=[
SystemPromptMessage(
content="You are a helpful AI assistant.",
),
UserPromptMessage(content="Hello World!"),
],
model_parameters={
"temperature": 0.7,
"top_p": 1.0,
},
stop=["you"],
stream=True,
user="abc-123",
)
assert isinstance(response, Generator)
for chunk in response:
assert isinstance(chunk, LLMResultChunk)
assert isinstance(chunk.delta, LLMResultChunkDelta)
assert isinstance(chunk.delta.message, AssistantPromptMessage)
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
def test_invoke_stream_model_with_functions(setup_openai_mock):
model = ChatGLMLargeLanguageModel()
response = model.invoke(
model="chatglm3-6b",
credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},
prompt_messages=[
SystemPromptMessage(
content="你是一个天气机器人,你不知道今天的天气怎么样,你需要通过调用一个函数来获取天气信息。"
),
UserPromptMessage(content="波士顿天气如何?"),
],
model_parameters={
"temperature": 0,
"top_p": 1.0,
},
stop=["you"],
user="abc-123",
stream=True,
tools=[
PromptMessageTool(
name="get_current_weather",
description="Get the current weather in a given location",
parameters={
"type": "object",
"properties": {
"location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
)
],
)
assert isinstance(response, Generator)
call: LLMResultChunk = None
chunks = []
for chunk in response:
chunks.append(chunk)
assert isinstance(chunk, LLMResultChunk)
assert isinstance(chunk.delta, LLMResultChunkDelta)
assert isinstance(chunk.delta.message, AssistantPromptMessage)
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
if chunk.delta.message.tool_calls and len(chunk.delta.message.tool_calls) > 0:
call = chunk
break
assert call is not None
assert call.delta.message.tool_calls[0].function.name == "get_current_weather"
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
def test_invoke_model_with_functions(setup_openai_mock):
model = ChatGLMLargeLanguageModel()
response = model.invoke(
model="chatglm3-6b",
credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},
prompt_messages=[UserPromptMessage(content="What is the weather like in San Francisco?")],
model_parameters={
"temperature": 0.7,
"top_p": 1.0,
},
stop=["you"],
user="abc-123",
stream=False,
tools=[
PromptMessageTool(
name="get_current_weather",
description="Get the current weather in a given location",
parameters={
"type": "object",
"properties": {
"location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
"unit": {"type": "string", "enum": ["c", "f"]},
},
"required": ["location"],
},
)
],
)
assert isinstance(response, LLMResult)
assert len(response.message.content) > 0
assert response.usage.total_tokens > 0
assert response.message.tool_calls[0].function.name == "get_current_weather"
def test_get_num_tokens():
model = ChatGLMLargeLanguageModel()
num_tokens = model.get_num_tokens(
model="chatglm2-6b",
credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},
prompt_messages=[
SystemPromptMessage(
content="You are a helpful AI assistant.",
),
UserPromptMessage(content="Hello World!"),
],
tools=[
PromptMessageTool(
name="get_current_weather",
description="Get the current weather in a given location",
parameters={
"type": "object",
"properties": {
"location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
"unit": {"type": "string", "enum": ["c", "f"]},
},
"required": ["location"],
},
)
],
)
assert isinstance(num_tokens, int)
assert num_tokens == 77
num_tokens = model.get_num_tokens(
model="chatglm2-6b",
credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},
prompt_messages=[
SystemPromptMessage(
content="You are a helpful AI assistant.",
),
UserPromptMessage(content="Hello World!"),
],
)
assert isinstance(num_tokens, int)
assert num_tokens == 21