.gitignore CHANGED
@@ -377,6 +377,4 @@ monotonic_align/core.c
377
  /resources
378
  /MoeGoe.spec
379
  /dist/MoeGoe
380
- /dist
381
-
382
- .idea
 
377
  /resources
378
  /MoeGoe.spec
379
  /dist/MoeGoe
380
+ /dist
 
 
app.py CHANGED
@@ -1,150 +1,123 @@
1
- # coding=utf-8
2
- import time
3
- import os
4
- import gradio as gr
5
- import utils
6
- import argparse
7
- import commons
8
- from models import SynthesizerTrn
9
- from text import text_to_sequence
10
- import torch
11
- from torch import no_grad, LongTensor
12
- import webbrowser
13
- import logging
14
- import gradio.processing_utils as gr_processing_utils
15
- logging.getLogger('numba').setLevel(logging.WARNING)
16
- limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
17
-
18
- audio_postprocess_ori = gr.Audio.postprocess
19
- def audio_postprocess(self, y):
20
- data = audio_postprocess_ori(self, y)
21
- if data is None:
22
- return None
23
- return gr_processing_utils.encode_url_or_file_to_base64(data["name"])
24
- gr.Audio.postprocess = audio_postprocess
25
-
26
- def get_text(text, hps):
27
- text_norm, clean_text = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
28
- if hps.data.add_blank:
29
- text_norm = commons.intersperse(text_norm, 0)
30
- text_norm = LongTensor(text_norm)
31
- return text_norm, clean_text
32
-
33
- def vits(text, language, speaker_id, noise_scale, noise_scale_w, length_scale):
34
- start = time.perf_counter()
35
- if not len(text):
36
- return "输入文本不能为空!", None, None
37
- text = text.replace('\n', ' ').replace('\r', '').replace(" ", "")
38
- if len(text) > 100 and limitation:
39
- return f"输入文字过长!{len(text)}>100", None, None
40
- if language == 0:
41
- text = f"[ZH]{text}[ZH]"
42
- elif language == 1:
43
- text = f"[JA]{text}[JA]"
44
- else:
45
- text = f"{text}"
46
- stn_tst, clean_text = get_text(text, hps_ms)
47
- with no_grad():
48
- x_tst = stn_tst.unsqueeze(0).to(device)
49
- x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device)
50
- speaker_id = LongTensor([speaker_id]).to(device)
51
- audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=speaker_id, noise_scale=noise_scale, noise_scale_w=noise_scale_w,
52
- length_scale=length_scale)[0][0, 0].data.cpu().float().numpy()
53
-
54
- return "生成成功!", (22050, audio), f"生成耗时 {round(time.perf_counter()-start, 2)} s"
55
-
56
- def search_speaker(search_value):
57
- for s in speakers:
58
- if search_value == s:
59
- return s
60
- for s in speakers:
61
- if search_value in s:
62
- return s
63
-
64
- def change_lang(language):
65
- if language == 0:
66
- return 0.6, 0.668, 1.2
67
- else:
68
- return 0.6, 0.668, 1.1
69
-
70
- download_audio_js = """
71
- () =>{{
72
- let root = document.querySelector("body > gradio-app");
73
- if (root.shadowRoot != null)
74
- root = root.shadowRoot;
75
- let audio = root.querySelector("#tts-audio").querySelector("audio");
76
- let text = root.querySelector("#input-text").querySelector("textarea");
77
- if (audio == undefined)
78
- return;
79
- text = text.value;
80
- if (text == undefined)
81
- text = Math.floor(Math.random()*100000000);
82
- audio = audio.src;
83
- let oA = document.createElement("a");
84
- oA.download = text.substr(0, 20)+'.wav';
85
- oA.href = audio;
86
- document.body.appendChild(oA);
87
- oA.click();
88
- oA.remove();
89
- }}
90
- """
91
-
92
- if __name__ == '__main__':
93
- parser = argparse.ArgumentParser()
94
- parser.add_argument('--device', type=str, default='cpu')
95
- parser.add_argument('--api', action="store_true", default=False)
96
- parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
97
- parser.add_argument("--colab", action="store_true", default=False, help="share gradio app")
98
- args = parser.parse_args()
99
- device = torch.device(args.device)
100
-
101
- hps_ms = utils.get_hparams_from_file(r'./model/config.json')
102
- net_g_ms = SynthesizerTrn(
103
- len(hps_ms.symbols),
104
- hps_ms.data.filter_length // 2 + 1,
105
- hps_ms.train.segment_size // hps_ms.data.hop_length,
106
- n_speakers=hps_ms.data.n_speakers,
107
- **hps_ms.model)
108
- _ = net_g_ms.eval().to(device)
109
- speakers = hps_ms.speakers
110
- model, optimizer, learning_rate, epochs = utils.load_checkpoint(r'./model/G_953000.pth', net_g_ms, None)
111
-
112
- with gr.Blocks() as app:
113
- gr.Markdown(
114
- "# <center> VITS语音在线合成demo\n"
115
- "# <center> 严禁将模型用于任何商业项目,否则后果自负\n"
116
- "<div align='center'>主要有赛马娘,原神中文,原神日语,崩坏3的音色</div>"
117
- '<div align="center"><a><font color="#dd0000">结果有随机性,语调可能很奇怪,可多次生成取最佳效果</font></a></div>'
118
- '<div align="center"><a><font color="#dd0000">标点符号会影响生成的结果</font></a></div>'
119
- )
120
-
121
- with gr.Tabs():
122
- with gr.TabItem("vits"):
123
- with gr.Row():
124
- with gr.Column():
125
- input_text = gr.Textbox(label="Text (100 words limitation) " if limitation else "Text", lines=5, value="今天晚上吃啥好呢。", elem_id=f"input-text")
126
- lang = gr.Dropdown(label="Language", choices=["中文", "日语", "中日混合(中���用[ZH][ZH]包裹起来,日文用[JA][JA]包裹起来)"],
127
- type="index", value="中文")
128
- btn = gr.Button(value="Submit")
129
- with gr.Row():
130
- search = gr.Textbox(label="Search Speaker", lines=1)
131
- btn2 = gr.Button(value="Search")
132
- sid = gr.Dropdown(label="Speaker", choices=speakers, type="index", value=speakers[228])
133
- with gr.Row():
134
- ns = gr.Slider(label="noise_scale(控制感情变化程度)", minimum=0.1, maximum=1.0, step=0.1, value=0.6, interactive=True)
135
- nsw = gr.Slider(label="noise_scale_w(控制音素发音长度)", minimum=0.1, maximum=1.0, step=0.1, value=0.668, interactive=True)
136
- ls = gr.Slider(label="length_scale(控制整体语速)", minimum=0.1, maximum=2.0, step=0.1, value=1.2, interactive=True)
137
- with gr.Column():
138
- o1 = gr.Textbox(label="Output Message")
139
- o2 = gr.Audio(label="Output Audio", elem_id=f"tts-audio")
140
- o3 = gr.Textbox(label="Extra Info")
141
- download = gr.Button("Download Audio")
142
- btn.click(vits, inputs=[input_text, lang, sid, ns, nsw, ls], outputs=[o1, o2, o3])
143
- download.click(None, [], [], _js=download_audio_js.format())
144
- btn2.click(search_speaker, inputs=[search], outputs=[sid])
145
- lang.change(change_lang, inputs=[lang], outputs=[ns, nsw, ls])
146
- with gr.TabItem("可用人物一览"):
147
- gr.Radio(label="Speaker", choices=speakers, interactive=False, type="index")
148
- if args.colab:
149
- webbrowser.open("http://127.0.0.1:7860")
150
- app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share)
 
1
+ # coding=utf-8
2
+ import time
3
+ import gradio as gr
4
+ import utils
5
+ import commons
6
+ from models import SynthesizerTrn
7
+ from text import text_to_sequence
8
+ from torch import no_grad, LongTensor
9
+
10
+ hps_ms = utils.get_hparams_from_file(r'./model/config.json')
11
+ net_g_ms = SynthesizerTrn(
12
+ len(hps_ms.symbols),
13
+ hps_ms.data.filter_length // 2 + 1,
14
+ hps_ms.train.segment_size // hps_ms.data.hop_length,
15
+ n_speakers=hps_ms.data.n_speakers,
16
+ **hps_ms.model)
17
+ _ = net_g_ms.eval()
18
+ speakers = hps_ms.speakers
19
+ model, optimizer, learning_rate, epochs = utils.load_checkpoint(r'./model/G_953000.pth', net_g_ms, None)
20
+
21
+ def get_text(text, hps):
22
+ text_norm, clean_text = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
23
+ if hps.data.add_blank:
24
+ text_norm = commons.intersperse(text_norm, 0)
25
+ text_norm = LongTensor(text_norm)
26
+ return text_norm, clean_text
27
+
28
+ def vits(text, language, speaker_id, noise_scale, noise_scale_w, length_scale):
29
+ start = time.perf_counter()
30
+ if not len(text):
31
+ return "输入文本不能为空!", None, None
32
+ text = text.replace('\n', ' ').replace('\r', '').replace(" ", "")
33
+ if len(text) > 100:
34
+ return f"输入文字过长!{len(text)}>100", None, None
35
+ if language == 0:
36
+ text = f"[ZH]{text}[ZH]"
37
+ elif language == 1:
38
+ text = f"[JA]{text}[JA]"
39
+ else:
40
+ text = f"{text}"
41
+ stn_tst, clean_text = get_text(text, hps_ms)
42
+ with no_grad():
43
+ x_tst = stn_tst.unsqueeze(0)
44
+ x_tst_lengths = LongTensor([stn_tst.size(0)])
45
+ speaker_id = LongTensor([speaker_id])
46
+ audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=speaker_id, noise_scale=noise_scale, noise_scale_w=noise_scale_w,
47
+ length_scale=length_scale)[0][0, 0].data.float().numpy()
48
+
49
+ return "生成成功!", (22050, audio), f"生成耗时 {round(time.perf_counter()-start, 2)} s"
50
+
51
+ def search_speaker(search_value):
52
+ for s in speakers:
53
+ if search_value == s:
54
+ return s
55
+ for s in speakers:
56
+ if search_value in s:
57
+ return s
58
+
59
+ def change_lang(language):
60
+ if language == 0:
61
+ return 0.6, 0.668, 1.2
62
+ else:
63
+ return 0.6, 0.668, 1.1
64
+
65
+ download_audio_js = """
66
+ () =>{{
67
+ let root = document.querySelector("body > gradio-app");
68
+ if (root.shadowRoot != null)
69
+ root = root.shadowRoot;
70
+ let audio = root.querySelector("#tts-audio").querySelector("audio");
71
+ let text = root.querySelector("#input-text").querySelector("textarea");
72
+ if (audio == undefined)
73
+ return;
74
+ text = text.value;
75
+ if (text == undefined)
76
+ text = Math.floor(Math.random()*100000000);
77
+ audio = audio.src;
78
+ let oA = document.createElement("a");
79
+ oA.download = text.substr(0, 20)+'.wav';
80
+ oA.href = audio;
81
+ document.body.appendChild(oA);
82
+ oA.click();
83
+ oA.remove();
84
+ }}
85
+ """
86
+
87
+ if __name__ == '__main__':
88
+ with gr.Blocks() as app:
89
+ gr.Markdown(
90
+ "# <center> VITS语音在线合成demo\n"
91
+ "<div align='center'>主要有赛马娘,原神中文,原神日语,崩坏3的音色</div>"
92
+ '<div align="center"><a><font color="#dd0000">结果有随机性,语调可能很奇怪,可多次生成取最佳效果</font></a></div>'
93
+ '<div align="center"><a><font color="#dd0000">标点符号会影响生成的结果</font></a></div>'
94
+ )
95
+
96
+ with gr.Tabs():
97
+ with gr.TabItem("vits"):
98
+ with gr.Row():
99
+ with gr.Column():
100
+ input_text = gr.Textbox(label="Text (100 words limitation)", lines=5, value="今天晚上吃啥好呢。", elem_id=f"input-text")
101
+ lang = gr.Dropdown(label="Language", choices=["中文", "日语", "中日混合(中文用[ZH][ZH]包裹起来,日文用[JA][JA]包裹起来)"],
102
+ type="index", value="中文")
103
+ btn = gr.Button(value="Submit")
104
+ with gr.Row():
105
+ search = gr.Textbox(label="Search Speaker", lines=1)
106
+ btn2 = gr.Button(value="Search")
107
+ sid = gr.Dropdown(label="Speaker", choices=speakers, type="index", value=speakers[228])
108
+ with gr.Row():
109
+ ns = gr.Slider(label="noise_scale(控制感情变化程度)", minimum=0.1, maximum=1.0, step=0.1, value=0.6, interactive=True)
110
+ nsw = gr.Slider(label="noise_scale_w(控制音素发音长度)", minimum=0.1, maximum=1.0, step=0.1, value=0.668, interactive=True)
111
+ ls = gr.Slider(label="length_scale(控制整体语速)", minimum=0.1, maximum=2.0, step=0.1, value=1.2, interactive=True)
112
+ with gr.Column():
113
+ o1 = gr.Textbox(label="Output Message")
114
+ o2 = gr.Audio(label="Output Audio", elem_id=f"tts-audio")
115
+ o3 = gr.Textbox(label="Extra Info")
116
+ download = gr.Button("Download Audio")
117
+ btn.click(vits, inputs=[input_text, lang, sid, ns, nsw, ls], outputs=[o1, o2, o3])
118
+ download.click(None, [], [], _js=download_audio_js.format())
119
+ btn2.click(search_speaker, inputs=[search], outputs=[sid])
120
+ lang.change(change_lang, inputs=[lang], outputs=[ns, nsw, ls])
121
+ with gr.TabItem("可用人物一览"):
122
+ gr.Radio(label="Speaker", choices=speakers, interactive=False, type="index")
123
+ app.queue(concurrency_count=1).launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
monotonic_align/__init__.py DELETED
@@ -1,20 +0,0 @@
1
- from numpy import zeros, int32, float32
2
- from torch import from_numpy
3
-
4
- from .core import maximum_path_jit
5
-
6
-
7
- def maximum_path(neg_cent, mask):
8
- """ numba optimized version.
9
- neg_cent: [b, t_t, t_s]
10
- mask: [b, t_t, t_s]
11
- """
12
- device = neg_cent.device
13
- dtype = neg_cent.dtype
14
- neg_cent = neg_cent.data.cpu().numpy().astype(float32)
15
- path = zeros(neg_cent.shape, dtype=int32)
16
-
17
- t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(int32)
18
- t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(int32)
19
- maximum_path_jit(path, neg_cent, t_t_max, t_s_max)
20
- return from_numpy(path).to(device=device, dtype=dtype)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
monotonic_align/core.py DELETED
@@ -1,36 +0,0 @@
1
- import numba
2
-
3
-
4
- @numba.jit(numba.void(numba.int32[:, :, ::1], numba.float32[:, :, ::1], numba.int32[::1], numba.int32[::1]),
5
- nopython=True, nogil=True)
6
- def maximum_path_jit(paths, values, t_ys, t_xs):
7
- b = paths.shape[0]
8
- max_neg_val = -1e9
9
- for i in range(int(b)):
10
- path = paths[i]
11
- value = values[i]
12
- t_y = t_ys[i]
13
- t_x = t_xs[i]
14
-
15
- v_prev = v_cur = 0.0
16
- index = t_x - 1
17
-
18
- for y in range(t_y):
19
- for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
20
- if x == y:
21
- v_cur = max_neg_val
22
- else:
23
- v_cur = value[y - 1, x]
24
- if x == 0:
25
- if y == 0:
26
- v_prev = 0.
27
- else:
28
- v_prev = max_neg_val
29
- else:
30
- v_prev = value[y - 1, x - 1]
31
- value[y, x] += max(v_prev, v_cur)
32
-
33
- for y in range(t_y - 1, -1, -1):
34
- path[y, index] = 1
35
- if index != 0 and (index == y or value[y - 1, index] < value[y - 1, index - 1]):
36
- index = index - 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
monotonic_align/monotonic_align/core.cp38-win_amd64.pyd ADDED
Binary file (123 kB). View file