Spaces:
Runtime error
Runtime error
File size: 6,846 Bytes
987aabd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import os
import re
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TextStreamer
from peft import PeftModel
def get_device_map():
num_gpus = torch.cuda.device_count()
if num_gpus > 1:
print("More than one GPU found. Setting device_map to use CUDA device 0.")
return 'cuda:0'
else:
return 'auto'
def check_adapter_path(adapters_name):
"""
Checks if the adapter path is correctly set and not a placeholder.
Args:
adapters_name (str): The file path for the adapters.
Raises:
ValueError: If the adapters_name contains placeholder characters.
"""
if '<' in adapters_name or '>' in adapters_name:
raise ValueError("The adapter path has not been set correctly.")
def load_tokenizer(model_name):
"""
Loads and returns a tokenizer for the specified model.
Args:
model_name (str): The name of the model for which to load the tokenizer.
Returns:
AutoTokenizer: The loaded tokenizer with special tokens added and padding side set.
"""
tok = AutoTokenizer.from_pretrained(model_name, device_map=get_device_map(), trust_remote_code=True)
tok.add_special_tokens({'pad_token': '[PAD]'})
tok.padding_side = 'right' # TRL requires right padding
return tok
def load_model(model_name, torch_dtype, quant_type):
"""
Loads and returns a model with the specified quantization configuration.
If more than one GPU is available, wraps the model with DataParallel.
Args:
model_name (str): The name of the model to load.
torch_dtype (torch.dtype): The data type for model weights (e.g., torch.float16).
quant_type (str): The quantization type to use.
Returns:
AutoModelForCausalLM: The loaded model possibly wrapped with DataParallel.
"""
try:
model = AutoModelForCausalLM.from_pretrained(
pretrained_model_name_or_path=model_name,
trust_remote_code=True,
device_map=get_device_map(),
torch_dtype=torch_dtype,
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch_dtype,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type=quant_type
),
)
return model
except Exception as e:
raise RuntimeError(f"Error loading model: {e}")
def resize_embeddings(model, tokenizer):
"""
Resizes the token embeddings in the model to account for new tokens.
Args:
model (AutoModelForCausalLM): The model whose token embeddings will be resized.
tokenizer (AutoTokenizer): The tokenizer corresponding to the model.
"""
model.resize_token_embeddings(len(tokenizer))
def load_peft_model(model, adapters_name):
"""
Loads the PEFT model from the pretrained model and specified adapters.
Args:
model (AutoModelForCausalLM): The base model.
adapters_name (str): Path to the adapters file.
Returns:
PeftModel: The PEFT model with the loaded adapters.
"""
return PeftModel.from_pretrained(model, adapters_name)
def get_device():
"""
Determines and returns the device to use for computations.
If CUDA is available, returns a CUDA device, otherwise returns a CPU device.
Prints the number of GPUs available if CUDA is used.
Returns:
torch.device: The device to use.
"""
if torch.cuda.is_available():
device = torch.device("cuda")
print(f"Number of GPUs available: {torch.cuda.device_count()}")
else:
device = torch.device("cpu")
return device
def run_prompt(model, tokenizer, device, template):
"""
Runs an interactive prompt where the user can enter text to get generated responses.
Continues to prompt the user for input until '#end' is entered.
Args:
model (AutoModelForCausalLM): The model to use for text generation.
tokenizer (AutoTokenizer): The tokenizer to use for encoding the input text.
device (torch.device): The device on which to perform the computation.
template (str): The template string to format the input text.
"""
while True:
new_input = input("Enter your text (type #end to stop): ")
if new_input == "#end":
break
try:
_ = generate_text(model, tokenizer, device, new_input, template)
except Exception as e:
print(f"An error occurred during text generation: {e}")
def generate_text(model, tokenizer, device, input_text, template):
"""
Generates and returns text using the provided model and tokenizer for the input text.
Args:
model (AutoModelForCausalLM): The model to use for text generation.
tokenizer (AutoTokenizer): The tokenizer to use for encoding the input text.
device (torch.device): The device on which to perform the computation.
input_text (str): The input text to generate responses for.
template (str): The template string to format the input text.
Returns:
torch.Tensor: The generated text tensor.
"""
inputs = tokenizer(template.format(input_text), return_tensors="pt")
inputs = inputs.to(device) # Move input tensors to the device
streamer = TextStreamer(tokenizer)
return model.generate(**inputs, streamer=streamer,
max_new_tokens=1024,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id)
def get_last_folder_alphabetically(directory_path):
"""
Finds the last folder alphabetically in a specified directory.
Args:
directory_path (str): The path to the directory.
Returns:
str: The path to the last folder found alphabetically.
If the directory does not exist or contains no folders, a descriptive string is returned.
"""
if not os.path.exists(directory_path):
return "Directory does not exist."
all_files_and_folders = os.listdir(directory_path)
only_folders = [f for f in all_files_and_folders if os.path.isdir(os.path.join(directory_path, f))]
if not only_folders:
return "No folders found in the directory."
only_folders.sort(key=natural_sort_key)
last_folder = only_folders[-1]
return os.path.join(directory_path, last_folder)
def natural_sort_key(s):
"""
Generates a key for sorting strings that contain numbers where the numbers should be sorted numerically,
and the rest alphabetically.
Args:
s (str): The string to be sorted.
Returns:
list: A list of strings and integers derived from the input string.
"""
return [int(text) if text.isdigit() else text.lower() for text in re.split('([0-9]+)', s)]
|