File size: 2,851 Bytes
4394cfc d11611b 4394cfc 90f58ba 7612848 90f58ba 7612848 90f58ba 4394cfc 90f58ba 7612848 90f58ba 7612848 90f58ba 7612848 4394cfc 90f58ba 03cc196 4394cfc eefde8a 4394cfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
import argparse
import json
from os import listdir
from os.path import isfile, join, exists, isdir, abspath
import gradio as gr
import numpy as np
import tensorflow as tf
from tensorflow import keras
import tensorflow_hub as hub
IMAGE_DIM = 299 # required/default image dimensionality
model = tf.keras.models.load_model("nsfw.299x299.h5", custom_objects={'KerasLayer': hub.KerasLayer},compile=False)
# def load_images(image_paths, image_size, verbose=True):
# '''
# Function for loading images into numpy arrays for passing to model.predict
# inputs:
# image_paths: list of image paths to load
# image_size: size into which images should be resized
# verbose: show all of the image path and sizes loaded
# outputs:
# loaded_images: loaded images on which keras model can run predictions
# loaded_image_indexes: paths of images which the function is able to process
# '''
# loaded_images = []
# loaded_image_paths = []
# if isdir(image_paths):
# parent = abspath(image_paths)
# image_paths = [join(parent, f) for f in listdir(image_paths) if isfile(join(parent, f))]
# elif isfile(image_paths):
# image_paths = [image_paths]
# for img_path in image_paths:
# try:
# if verbose:
# print(img_path, "size:", image_size)
# image = keras.preprocessing.image.load_img(img_path, target_size=image_size)
# image = keras.preprocessing.image.img_to_array(image)
# image /= 255
# image
# loaded_images.append(image)
# loaded_image_paths.append(img_path)
# except Exception as ex:
# print("Image Load Failure: ", img_path, ex)
# return np.asarray(loaded_images)
def load_images(image):
loaded_images = []
image = keras.preprocessing.image.array_to_img(image)
image = image.resize((299, 299))
image = keras.preprocessing.image.img_to_array(image)
image /= 255
loaded_images.append(image)
return np.asarray(loaded_images)
def classify_nd(model, nd_images, predict_args={}):
# file_path = nd_images.filename
img = load_images(nd_images)
model_preds = model.predict(img, **predict_args)
categories = ['drawings', 'hentai', 'neutral', 'porn', 'sexy']
probs = []
for i, single_preds in enumerate(model_preds):
single_probs = {}
for j, pred in enumerate(single_preds):
single_probs[categories[j]] = float(pred)
probs.append(single_probs)
return probs
def nsfw(image):
image_preds = classify_nd(model, image)
return image_preds
demo = gr.Interface(fn=nsfw,
inputs= gr.Image(type="pil"),
outputs=["text"],
title="")
demo.launch(share=False) |