File size: 3,317 Bytes
ab2ded1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
from abc import ABC

import pandas as pd

from api.db import LLMType
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.settings import retrievaler
from agent.component.base import ComponentBase, ComponentParamBase


class RetrievalParam(ComponentParamBase):

    """
    Define the Retrieval component parameters.
    """
    def __init__(self):
        super().__init__()
        self.similarity_threshold = 0.2
        self.keywords_similarity_weight = 0.5
        self.top_n = 8
        self.top_k = 1024
        self.kb_ids = []
        self.rerank_id = ""
        self.empty_response = ""

    def check(self):
        self.check_decimal_float(self.similarity_threshold, "[Retrieval] Similarity threshold")
        self.check_decimal_float(self.keywords_similarity_weight, "[Retrieval] Keywords similarity weight")
        self.check_positive_number(self.top_n, "[Retrieval] Top N")
        self.check_empty(self.kb_ids, "[Retrieval] Knowledge bases")


class Retrieval(ComponentBase, ABC):
    component_name = "Retrieval"

    def _run(self, history, **kwargs):
        query = []
        for role, cnt in history[::-1][:self._param.message_history_window_size]:
            if role != "user":continue
            query.append(cnt)
        query = "\n".join(query)

        kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids)
        if not kbs:
            raise ValueError("Can't find knowledgebases by {}".format(self._param.kb_ids))
        embd_nms = list(set([kb.embd_id for kb in kbs]))
        assert len(embd_nms) == 1, "Knowledge bases use different embedding models."

        embd_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, embd_nms[0])
        self._canvas.set_embedding_model(embd_nms[0])

        rerank_mdl = None
        if self._param.rerank_id:
            rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)

        kbinfos = retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
                                        1, self._param.top_n,
                                        self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight,
                                        aggs=False, rerank_mdl=rerank_mdl)

        if not kbinfos["chunks"]:
            df = Retrieval.be_output(self._param.empty_response)
            df["empty_response"] = True
            return df

        df = pd.DataFrame(kbinfos["chunks"])
        df["content"] = df["content_with_weight"]
        del df["content_with_weight"]
        print(">>>>>>>>>>>>>>>>>>>>>>>>>>\n", query, df)
        return df