File size: 25,482 Bytes
ab2ded1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#

import re, copy, time, datetime, demjson3, \
    traceback, signal
import numpy as np
from deepdoc.parser.resume.entities import degrees, schools, corporations
from rag.nlp import rag_tokenizer, surname
from xpinyin import Pinyin
from contextlib import contextmanager


class TimeoutException(Exception): pass


@contextmanager
def time_limit(seconds):
    def signal_handler(signum, frame):
        raise TimeoutException("Timed out!")

    signal.signal(signal.SIGALRM, signal_handler)
    signal.alarm(seconds)
    try:
        yield
    finally:
        signal.alarm(0)


ENV = None
PY = Pinyin()


def rmHtmlTag(line):
    return re.sub(r"<[a-z0-9.\"=';,:\+_/ -]+>", " ", line, 100000, re.IGNORECASE)


def highest_degree(dg):
    if not dg: return ""
    if type(dg) == type(""): dg = [dg]
    m = {"初中": 0, "高中": 1, "中专": 2, "大专": 3, "专升本": 4, "本科": 5, "硕士": 6, "博士": 7, "博士后": 8}
    return sorted([(d, m.get(d, -1)) for d in dg], key=lambda x: x[1] * -1)[0][0]


def forEdu(cv):
    if not cv.get("education_obj"):
        cv["integerity_flt"] *= 0.8
        return cv

    first_fea, fea, maj, fmaj, deg, fdeg, sch, fsch, st_dt, ed_dt = [], [], [], [], [], [], [], [], [], []
    edu_nst = []
    edu_end_dt = ""
    cv["school_rank_int"] = 1000000
    for ii, n in enumerate(sorted(cv["education_obj"], key=lambda x: x.get("start_time", "3"))):
        e = {}
        if n.get("end_time"):
            if n["end_time"] > edu_end_dt: edu_end_dt = n["end_time"]
            try:
                dt = n["end_time"]
                if re.match(r"[0-9]{9,}", dt): dt = turnTm2Dt(dt)
                y, m, d = getYMD(dt)
                ed_dt.append(str(y))
                e["end_dt_kwd"] = str(y)
            except Exception as e:
                pass
        if n.get("start_time"):
            try:
                dt = n["start_time"]
                if re.match(r"[0-9]{9,}", dt): dt = turnTm2Dt(dt)
                y, m, d = getYMD(dt)
                st_dt.append(str(y))
                e["start_dt_kwd"] = str(y)
            except Exception as e:
                pass

        r = schools.select(n.get("school_name", ""))
        if r:
            if str(r.get("type", "")) == "1": fea.append("211")
            if str(r.get("type", "")) == "2": fea.append("211")
            if str(r.get("is_abroad", "")) == "1": fea.append("留学")
            if str(r.get("is_double_first", "")) == "1": fea.append("双一流")
            if str(r.get("is_985", "")) == "1": fea.append("985")
            if str(r.get("is_world_known", "")) == "1": fea.append("海外知名")
            if r.get("rank") and cv["school_rank_int"] > r["rank"]: cv["school_rank_int"] = r["rank"]

        if n.get("school_name") and isinstance(n["school_name"], str):
            sch.append(re.sub(r"(211|985|重点大学|[,&;;-])", "", n["school_name"]))
            e["sch_nm_kwd"] = sch[-1]
        fea.append(rag_tokenizer.fine_grained_tokenize(rag_tokenizer.tokenize(n.get("school_name", ""))).split(" ")[-1])

        if n.get("discipline_name") and isinstance(n["discipline_name"], str):
            maj.append(n["discipline_name"])
            e["major_kwd"] = n["discipline_name"]

        if not n.get("degree") and "985" in fea and not first_fea: n["degree"] = "1"

        if n.get("degree"):
            d = degrees.get_name(n["degree"])
            if d: e["degree_kwd"] = d
            if d == "本科" and ("专科" in deg or "专升本" in deg or "中专" in deg or "大专" in deg or re.search(r"(成人|自考|自学考试)",
                                                                                                     n.get(
                                                                                                         "school_name",
                                                                                                         ""))): d = "专升本"
            if d: deg.append(d)

            # for first degree
            if not fdeg and d in ["中专", "专升本", "专科", "本科", "大专"]:
                fdeg = [d]
                if n.get("school_name"): fsch = [n["school_name"]]
                if n.get("discipline_name"): fmaj = [n["discipline_name"]]
                first_fea = copy.deepcopy(fea)

        edu_nst.append(e)

    cv["sch_rank_kwd"] = []
    if cv["school_rank_int"] <= 20 \
            or ("海外名校" in fea and cv["school_rank_int"] <= 200):
        cv["sch_rank_kwd"].append("顶尖学校")
    elif cv["school_rank_int"] <= 50 and cv["school_rank_int"] > 20 \
            or ("海外名校" in fea and cv["school_rank_int"] <= 500 and \
                cv["school_rank_int"] > 200):
        cv["sch_rank_kwd"].append("精英学校")
    elif cv["school_rank_int"] > 50 and ("985" in fea or "211" in fea) \
            or ("海外名校" in fea and cv["school_rank_int"] > 500):
        cv["sch_rank_kwd"].append("优质学校")
    else:
        cv["sch_rank_kwd"].append("一般学校")

    if edu_nst: cv["edu_nst"] = edu_nst
    if fea: cv["edu_fea_kwd"] = list(set(fea))
    if first_fea: cv["edu_first_fea_kwd"] = list(set(first_fea))
    if maj: cv["major_kwd"] = maj
    if fsch: cv["first_school_name_kwd"] = fsch
    if fdeg: cv["first_degree_kwd"] = fdeg
    if fmaj: cv["first_major_kwd"] = fmaj
    if st_dt: cv["edu_start_kwd"] = st_dt
    if ed_dt: cv["edu_end_kwd"] = ed_dt
    if ed_dt: cv["edu_end_int"] = max([int(t) for t in ed_dt])
    if deg:
        if "本科" in deg and "专科" in deg:
            deg.append("专升本")
            deg = [d for d in deg if d != '本科']
        cv["degree_kwd"] = deg
        cv["highest_degree_kwd"] = highest_degree(deg)
    if edu_end_dt:
        try:
            if re.match(r"[0-9]{9,}", edu_end_dt): edu_end_dt = turnTm2Dt(edu_end_dt)
            if edu_end_dt.strip("\n") == "至今": edu_end_dt = cv.get("updated_at_dt", str(datetime.date.today()))
            y, m, d = getYMD(edu_end_dt)
            cv["work_exp_flt"] = min(int(str(datetime.date.today())[0:4]) - int(y), cv.get("work_exp_flt", 1000))
        except Exception as e:
            print("EXCEPTION: ", e, edu_end_dt, cv.get("work_exp_flt"))
    if sch:
        cv["school_name_kwd"] = sch
        if (len(cv.get("degree_kwd", [])) >= 1 and "本科" in cv["degree_kwd"]) \
                or all([c.lower() in ["硕士", "博士", "mba", "博士后"] for c in cv.get("degree_kwd", [])]) \
                or not cv.get("degree_kwd"):
            for c in sch:
                if schools.is_good(c):
                    if "tag_kwd" not in cv: cv["tag_kwd"] = []
                    cv["tag_kwd"].append("好学校")
                    cv["tag_kwd"].append("好学历")
                    break
        if (len(cv.get("degree_kwd", [])) >= 1 and \
            "本科" in cv["degree_kwd"] and \
            any([d.lower() in ["硕士", "博士", "mba", "博士"] for d in cv.get("degree_kwd", [])])) \
                or all([d.lower() in ["硕士", "博士", "mba", "博士后"] for d in cv.get("degree_kwd", [])]) \
                or any([d in ["mba", "emba", "博士后"] for d in cv.get("degree_kwd", [])]):
            if "tag_kwd" not in cv: cv["tag_kwd"] = []
            if "好学历" not in cv["tag_kwd"]: cv["tag_kwd"].append("好学历")

    if cv.get("major_kwd"): cv["major_tks"] = rag_tokenizer.tokenize(" ".join(maj))
    if cv.get("school_name_kwd"): cv["school_name_tks"] = rag_tokenizer.tokenize(" ".join(sch))
    if cv.get("first_school_name_kwd"): cv["first_school_name_tks"] = rag_tokenizer.tokenize(" ".join(fsch))
    if cv.get("first_major_kwd"): cv["first_major_tks"] = rag_tokenizer.tokenize(" ".join(fmaj))

    return cv


def forProj(cv):
    if not cv.get("project_obj"): return cv

    pro_nms, desc = [], []
    for i, n in enumerate(
            sorted(cv.get("project_obj", []), key=lambda x: str(x.get("updated_at", "")) if type(x) == type({}) else "",
                   reverse=True)):
        if n.get("name"): pro_nms.append(n["name"])
        if n.get("describe"): desc.append(str(n["describe"]))
        if n.get("responsibilities"): desc.append(str(n["responsibilities"]))
        if n.get("achivement"): desc.append(str(n["achivement"]))

    if pro_nms:
        # cv["pro_nms_tks"] = rag_tokenizer.tokenize(" ".join(pro_nms))
        cv["project_name_tks"] = rag_tokenizer.tokenize(pro_nms[0])
    if desc:
        cv["pro_desc_ltks"] = rag_tokenizer.tokenize(rmHtmlTag(" ".join(desc)))
        cv["project_desc_ltks"] = rag_tokenizer.tokenize(rmHtmlTag(desc[0]))

    return cv


def json_loads(line):
    return demjson3.decode(re.sub(r": *(True|False)", r": '\1'", line))


def forWork(cv):
    if not cv.get("work_obj"):
        cv["integerity_flt"] *= 0.7
        return cv

    flds = ["position_name", "corporation_name", "corporation_id", "responsibilities",
            "industry_name", "subordinates_count"]
    duas = []
    scales = []
    fea = {c: [] for c in flds}
    latest_job_tm = ""
    goodcorp = False
    goodcorp_ = False
    work_st_tm = ""
    corp_tags = []
    for i, n in enumerate(
            sorted(cv.get("work_obj", []), key=lambda x: str(x.get("start_time", "")) if type(x) == type({}) else "",
                   reverse=True)):
        if type(n) == type(""):
            try:
                n = json_loads(n)
            except Exception as e:
                continue

        if n.get("start_time") and (not work_st_tm or n["start_time"] < work_st_tm): work_st_tm = n["start_time"]
        for c in flds:
            if not n.get(c) or str(n[c]) == '0':
                fea[c].append("")
                continue
            if c == "corporation_name":
                n[c] = corporations.corpNorm(n[c], False)
                if corporations.is_good(n[c]):
                    if i == 0:
                        goodcorp = True
                    else:
                        goodcorp_ = True
                ct = corporations.corp_tag(n[c])
                if i == 0:
                    corp_tags.extend(ct)
                elif ct and ct[0] != "软外":
                    corp_tags.extend([f"{t}(曾)" for t in ct])

            fea[c].append(rmHtmlTag(str(n[c]).lower()))

        y, m, d = getYMD(n.get("start_time"))
        if not y or not m: continue
        st = "%s-%02d-%02d" % (y, int(m), int(d))
        latest_job_tm = st

        y, m, d = getYMD(n.get("end_time"))
        if (not y or not m) and i > 0: continue
        if not y or not m or int(y) > 2022:  y, m, d = getYMD(str(n.get("updated_at", "")))
        if not y or not m: continue
        ed = "%s-%02d-%02d" % (y, int(m), int(d))

        try:
            duas.append((datetime.datetime.strptime(ed, "%Y-%m-%d") - datetime.datetime.strptime(st, "%Y-%m-%d")).days)
        except Exception as e:
            print("kkkkkkkkkkkkkkkkkkkk", n.get("start_time"), n.get("end_time"))

        if n.get("scale"):
            r = re.search(r"^([0-9]+)", str(n["scale"]))
            if r: scales.append(int(r.group(1)))

    if goodcorp:
        if "tag_kwd" not in cv: cv["tag_kwd"] = []
        cv["tag_kwd"].append("好公司")
    if goodcorp_:
        if "tag_kwd" not in cv: cv["tag_kwd"] = []
        cv["tag_kwd"].append("好公司(曾)")

    if corp_tags:
        if "tag_kwd" not in cv: cv["tag_kwd"] = []
        cv["tag_kwd"].extend(corp_tags)
        cv["corp_tag_kwd"] = [c for c in corp_tags if re.match(r"(综合|行业)", c)]

    if latest_job_tm: cv["latest_job_dt"] = latest_job_tm
    if fea["corporation_id"]: cv["corporation_id"] = fea["corporation_id"]

    if fea["position_name"]:
        cv["position_name_tks"] = rag_tokenizer.tokenize(fea["position_name"][0])
        cv["position_name_sm_tks"] = rag_tokenizer.fine_grained_tokenize(cv["position_name_tks"])
        cv["pos_nm_tks"] = rag_tokenizer.tokenize(" ".join(fea["position_name"][1:]))

    if fea["industry_name"]:
        cv["industry_name_tks"] = rag_tokenizer.tokenize(fea["industry_name"][0])
        cv["industry_name_sm_tks"] = rag_tokenizer.fine_grained_tokenize(cv["industry_name_tks"])
        cv["indu_nm_tks"] = rag_tokenizer.tokenize(" ".join(fea["industry_name"][1:]))

    if fea["corporation_name"]:
        cv["corporation_name_kwd"] = fea["corporation_name"][0]
        cv["corp_nm_kwd"] = fea["corporation_name"]
        cv["corporation_name_tks"] = rag_tokenizer.tokenize(fea["corporation_name"][0])
        cv["corporation_name_sm_tks"] = rag_tokenizer.fine_grained_tokenize(cv["corporation_name_tks"])
        cv["corp_nm_tks"] = rag_tokenizer.tokenize(" ".join(fea["corporation_name"][1:]))

    if fea["responsibilities"]:
        cv["responsibilities_ltks"] = rag_tokenizer.tokenize(fea["responsibilities"][0])
        cv["resp_ltks"] = rag_tokenizer.tokenize(" ".join(fea["responsibilities"][1:]))

    if fea["subordinates_count"]: fea["subordinates_count"] = [int(i) for i in fea["subordinates_count"] if
                                                               re.match(r"[^0-9]+$", str(i))]
    if fea["subordinates_count"]: cv["max_sub_cnt_int"] = np.max(fea["subordinates_count"])

    if type(cv.get("corporation_id")) == type(1): cv["corporation_id"] = [str(cv["corporation_id"])]
    if not cv.get("corporation_id"): cv["corporation_id"] = []
    for i in cv.get("corporation_id", []):
        cv["baike_flt"] = max(corporations.baike(i), cv["baike_flt"] if "baike_flt" in cv else 0)

    if work_st_tm:
        try:
            if re.match(r"[0-9]{9,}", work_st_tm): work_st_tm = turnTm2Dt(work_st_tm)
            y, m, d = getYMD(work_st_tm)
            cv["work_exp_flt"] = min(int(str(datetime.date.today())[0:4]) - int(y), cv.get("work_exp_flt", 1000))
        except Exception as e:
            print("EXCEPTION: ", e, work_st_tm, cv.get("work_exp_flt"))

    cv["job_num_int"] = 0
    if duas:
        cv["dua_flt"] = np.mean(duas)
        cv["cur_dua_int"] = duas[0]
        cv["job_num_int"] = len(duas)
    if scales: cv["scale_flt"] = np.max(scales)
    return cv


def turnTm2Dt(b):
    if not b: return
    b = str(b).strip()
    if re.match(r"[0-9]{10,}", b): b = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(int(b[:10])))
    return b


def getYMD(b):
    y, m, d = "", "", "01"
    if not b: return (y, m, d)
    b = turnTm2Dt(b)
    if re.match(r"[0-9]{4}", b): y = int(b[:4])
    r = re.search(r"[0-9]{4}.?([0-9]{1,2})", b)
    if r: m = r.group(1)
    r = re.search(r"[0-9]{4}.?[0-9]{,2}.?([0-9]{1,2})", b)
    if r: d = r.group(1)
    if not d or int(d) == 0 or int(d) > 31: d = "1"
    if not m or int(m) > 12 or int(m) < 1: m = "1"
    return (y, m, d)


def birth(cv):
    if not cv.get("birth"):
        cv["integerity_flt"] *= 0.9
        return cv
    y, m, d = getYMD(cv["birth"])
    if not m or not y: return cv
    b = "%s-%02d-%02d" % (y, int(m), int(d))
    cv["birth_dt"] = b
    cv["birthday_kwd"] = "%02d%02d" % (int(m), int(d))

    cv["age_int"] = datetime.datetime.now().year - int(y)
    return cv


def parse(cv):
    for k in cv.keys():
        if cv[k] == '\\N': cv[k] = ''
    # cv = cv.asDict()
    tks_fld = ["address", "corporation_name", "discipline_name", "email", "expect_city_names",
               "expect_industry_name", "expect_position_name", "industry_name", "industry_names", "name",
               "position_name", "school_name", "self_remark", "title_name"]
    small_tks_fld = ["corporation_name", "expect_position_name", "position_name", "school_name", "title_name"]
    kwd_fld = ["address", "city", "corporation_type", "degree", "discipline_name", "expect_city_names", "email",
               "expect_industry_name", "expect_position_name", "expect_type", "gender", "industry_name",
               "industry_names", "political_status", "position_name", "scale", "school_name", "phone", "tel"]
    num_fld = ["annual_salary", "annual_salary_from", "annual_salary_to", "expect_annual_salary", "expect_salary_from",
               "expect_salary_to", "salary_month"]

    is_fld = [
        ("is_fertility", "已育", "未育"),
        ("is_house", "有房", "没房"),
        ("is_management_experience", "有管理经验", "无管理经验"),
        ("is_marital", "已婚", "未婚"),
        ("is_oversea", "有海外经验", "无海外经验")
    ]

    rmkeys = []
    for k in cv.keys():
        if cv[k] is None: rmkeys.append(k)
        if (type(cv[k]) == type([]) or type(cv[k]) == type("")) and len(cv[k]) == 0: rmkeys.append(k)
    for k in rmkeys: del cv[k]

    integerity = 0.
    flds_num = 0.

    def hasValues(flds):
        nonlocal integerity, flds_num
        flds_num += len(flds)
        for f in flds:
            v = str(cv.get(f, ""))
            if len(v) > 0 and v != '0' and v != '[]': integerity += 1

    hasValues(tks_fld)
    hasValues(small_tks_fld)
    hasValues(kwd_fld)
    hasValues(num_fld)
    cv["integerity_flt"] = integerity / flds_num

    if cv.get("corporation_type"):
        for p, r in [(r"(公司|企业|其它|其他|Others*|\n|未填写|Enterprises|Company|companies)", ""),
                     (r"[//.· <\((]+.*", ""),
                     (r".*(合资|民企|股份制|中外|私营|个体|Private|创业|Owned|投资).*", "民营"),
                     (r".*(机关|事业).*", "机关"),
                     (r".*(非盈利|Non-profit).*", "非盈利"),
                     (r".*(外企|外商|欧美|foreign|Institution|Australia|港资).*", "外企"),
                     (r".*国有.*", "国企"),
                     (r"[ ()\(\)人/·0-9-]+", ""),
                     (r".*(元|规模|于|=|北京|上海|至今|中国|工资|州|shanghai|强|餐饮|融资|职).*", "")]:
            cv["corporation_type"] = re.sub(p, r, cv["corporation_type"], 1000, re.IGNORECASE)
        if len(cv["corporation_type"]) < 2: del cv["corporation_type"]

    if cv.get("political_status"):
        for p, r in [
            (r".*党员.*", "党员"),
            (r".*(无党派|公民).*", "群众"),
            (r".*团员.*", "团员")]:
            cv["political_status"] = re.sub(p, r, cv["political_status"])
        if not re.search(r"[党团群]", cv["political_status"]): del cv["political_status"]

    if cv.get("phone"): cv["phone"] = re.sub(r"^0*86([0-9]{11})", r"\1", re.sub(r"[^0-9]+", "", cv["phone"]))

    keys = list(cv.keys())
    for k in keys:
        # deal with json objects
        if k.find("_obj") > 0:
            try:
                cv[k] = json_loads(cv[k])
                cv[k] = [a for _, a in cv[k].items()]
                nms = []
                for n in cv[k]:
                    if type(n) != type({}) or "name" not in n or not n.get("name"): continue
                    n["name"] = re.sub(r"((442)|\t )", "", n["name"]).strip().lower()
                    if not n["name"]: continue
                    nms.append(n["name"])
                if nms:
                    t = k[:-4]
                    cv[f"{t}_kwd"] = nms
                    cv[f"{t}_tks"] = rag_tokenizer.tokenize(" ".join(nms))
            except Exception as e:
                print("【EXCEPTION】:", str(traceback.format_exc()), cv[k])
                cv[k] = []

        # tokenize fields
        if k in tks_fld:
            cv[f"{k}_tks"] = rag_tokenizer.tokenize(cv[k])
            if k in small_tks_fld: cv[f"{k}_sm_tks"] = rag_tokenizer.tokenize(cv[f"{k}_tks"])

        # keyword fields
        if k in kwd_fld: cv[f"{k}_kwd"] = [n.lower()
                                           for n in re.split(r"[\t,,;;. ]",
                                                             re.sub(r"([^a-zA-Z])[ ]+([^a-zA-Z ])", r"\1,\2", cv[k])
                                                             ) if n]

        if k in num_fld and cv.get(k): cv[f"{k}_int"] = cv[k]

    cv["email_kwd"] = cv.get("email_tks", "").replace(" ", "")
    # for name field
    if cv.get("name"):
        nm = re.sub(r"[\n——\-\((\+].*", "", cv["name"].strip())
        nm = re.sub(r"[ \t ]+", " ", nm)
        if re.match(r"[a-zA-Z ]+$", nm):
            if len(nm.split(" ")) > 1:
                cv["name"] = nm
            else:
                nm = ""
        elif nm and (surname.isit(nm[0]) or surname.isit(nm[:2])):
            nm = re.sub(r"[a-zA-Z]+.*", "", nm[:5])
        else:
            nm = ""
        cv["name"] = nm.strip()
        name = cv["name"]

        # name pingyin and its prefix
        cv["name_py_tks"] = " ".join(PY.get_pinyins(nm[:20], '')) + " " + " ".join(PY.get_pinyins(nm[:20], ' '))
        cv["name_py_pref0_tks"] = ""
        cv["name_py_pref_tks"] = ""
        for py in PY.get_pinyins(nm[:20], ''):
            for i in range(2, len(py) + 1): cv["name_py_pref_tks"] += " " + py[:i]
        for py in PY.get_pinyins(nm[:20], ' '):
            py = py.split(" ")
            for i in range(1, len(py) + 1): cv["name_py_pref0_tks"] += " " + "".join(py[:i])

        cv["name_kwd"] = name
        cv["name_pinyin_kwd"] = PY.get_pinyins(nm[:20], ' ')[:3]
        cv["name_tks"] = (
                rag_tokenizer.tokenize(name) + " " + (" ".join(list(name)) if not re.match(r"[a-zA-Z ]+$", name) else "")
        ) if name else ""
    else:
        cv["integerity_flt"] /= 2.

    if cv.get("phone"):
        r = re.search(r"(1[3456789][0-9]{9})", cv["phone"])
        if not r:
            cv["phone"] = ""
        else:
            cv["phone"] = r.group(1)

    # deal with date  fields
    if cv.get("updated_at") and isinstance(cv["updated_at"], datetime.datetime):
        cv["updated_at_dt"] = cv["updated_at"].strftime('%Y-%m-%d %H:%M:%S')
    else:
        y, m, d = getYMD(str(cv.get("updated_at", "")))
        if not y: y = "2012"
        if not m: m = "01"
        if not d: d = "01"
        cv["updated_at_dt"] = f"%s-%02d-%02d 00:00:00" % (y, int(m), int(d))
        # long text tokenize

    if cv.get("responsibilities"): cv["responsibilities_ltks"] = rag_tokenizer.tokenize(rmHtmlTag(cv["responsibilities"]))

    # for yes or no field
    fea = []
    for f, y, n in is_fld:
        if f not in cv: continue
        if cv[f] == '是': fea.append(y)
        if cv[f] == '否': fea.append(n)

    if fea: cv["tag_kwd"] = fea

    cv = forEdu(cv)
    cv = forProj(cv)
    cv = forWork(cv)
    cv = birth(cv)

    cv["corp_proj_sch_deg_kwd"] = [c for c in cv.get("corp_tag_kwd", [])]
    for i in range(len(cv["corp_proj_sch_deg_kwd"])):
        for j in cv.get("sch_rank_kwd", []): cv["corp_proj_sch_deg_kwd"][i] += "+" + j
    for i in range(len(cv["corp_proj_sch_deg_kwd"])):
        if cv.get("highest_degree_kwd"): cv["corp_proj_sch_deg_kwd"][i] += "+" + cv["highest_degree_kwd"]

    try:
        if not cv.get("work_exp_flt") and cv.get("work_start_time"):
            if re.match(r"[0-9]{9,}", str(cv["work_start_time"])):
                cv["work_start_dt"] = turnTm2Dt(cv["work_start_time"])
                cv["work_exp_flt"] = (time.time() - int(int(cv["work_start_time"]) / 1000)) / 3600. / 24. / 365.
            elif re.match(r"[0-9]{4}[^0-9]", str(cv["work_start_time"])):
                y, m, d = getYMD(str(cv["work_start_time"]))
                cv["work_start_dt"] = f"%s-%02d-%02d 00:00:00" % (y, int(m), int(d))
                cv["work_exp_flt"] = int(str(datetime.date.today())[0:4]) - int(y)
    except Exception as e:
        print("【EXCEPTION】", e, "==>", cv.get("work_start_time"))
    if "work_exp_flt" not in cv and cv.get("work_experience", 0): cv["work_exp_flt"] = int(cv["work_experience"]) / 12.

    keys = list(cv.keys())
    for k in keys:
        if not re.search(r"_(fea|tks|nst|dt|int|flt|ltks|kwd|id)$", k): del cv[k]
    for k in cv.keys():
        if not re.search("_(kwd|id)$", k) or type(cv[k]) != type([]): continue
        cv[k] = list(set([re.sub("(市)$", "", str(n)) for n in cv[k] if n not in ['中国', '0']]))
    keys = [k for k in cv.keys() if re.search(r"_feas*$", k)]
    for k in keys:
        if cv[k] <= 0: del cv[k]

    cv["tob_resume_id"] = str(cv["tob_resume_id"])
    cv["id"] = cv["tob_resume_id"]
    print("CCCCCCCCCCCCCCC")

    return dealWithInt64(cv)


def dealWithInt64(d):
    if isinstance(d, dict):
        for n, v in d.items():
            d[n] = dealWithInt64(v)

    if isinstance(d, list):
        d = [dealWithInt64(t) for t in d]

    if isinstance(d, np.integer): d = int(d)
    return d