File size: 5,563 Bytes
ab2ded1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
"""
Reference:
 - [graphrag](https://github.com/microsoft/graphrag)
"""

import json
import logging
import re
import traceback
from dataclasses import dataclass
from typing import Any, List, Callable
import networkx as nx
import pandas as pd
from graphrag import leiden
from graphrag.community_report_prompt import COMMUNITY_REPORT_PROMPT
from graphrag.leiden import add_community_info2graph
from rag.llm.chat_model import Base as CompletionLLM
from graphrag.utils import ErrorHandlerFn, perform_variable_replacements, dict_has_keys_with_types
from rag.utils import num_tokens_from_string
from timeit import default_timer as timer

log = logging.getLogger(__name__)


@dataclass
class CommunityReportsResult:
    """Community reports result class definition."""

    output: List[str]
    structured_output: List[dict]


class CommunityReportsExtractor:
    """Community reports extractor class definition."""

    _llm: CompletionLLM
    _extraction_prompt: str
    _output_formatter_prompt: str
    _on_error: ErrorHandlerFn
    _max_report_length: int

    def __init__(
        self,
        llm_invoker: CompletionLLM,
        extraction_prompt: str | None = None,
        on_error: ErrorHandlerFn | None = None,
        max_report_length: int | None = None,
    ):
        """Init method definition."""
        self._llm = llm_invoker
        self._extraction_prompt = extraction_prompt or COMMUNITY_REPORT_PROMPT
        self._on_error = on_error or (lambda _e, _s, _d: None)
        self._max_report_length = max_report_length or 1500

    def __call__(self, graph: nx.Graph, callback: Callable | None = None):
        communities: dict[str, dict[str, List]] = leiden.run(graph, {})
        total = sum([len(comm.items()) for _, comm in communities.items()])
        relations_df = pd.DataFrame([{"source":s, "target": t, **attr} for s, t, attr in graph.edges(data=True)])
        res_str = []
        res_dict = []
        over, token_count = 0, 0
        st = timer()
        for level, comm in communities.items():
            for cm_id, ents in comm.items():
                weight = ents["weight"]
                ents = ents["nodes"]
                ent_df = pd.DataFrame([{"entity": n, **graph.nodes[n]} for n in ents])
                rela_df = relations_df[(relations_df["source"].isin(ents)) | (relations_df["target"].isin(ents))].reset_index(drop=True)

                prompt_variables = {
                    "entity_df": ent_df.to_csv(index_label="id"),
                    "relation_df": rela_df.to_csv(index_label="id")
                }
                text = perform_variable_replacements(self._extraction_prompt, variables=prompt_variables)
                gen_conf = {"temperature": 0.3}
                try:
                    response = self._llm.chat(text, [], gen_conf)
                    token_count += num_tokens_from_string(text + response)
                    response = re.sub(r"^[^\{]*", "", response)
                    response = re.sub(r"[^\}]*$", "", response)
                    print(response)
                    response = json.loads(response)
                    if not dict_has_keys_with_types(response, [
                                ("title", str),
                                ("summary", str),
                                ("findings", list),
                                ("rating", float),
                                ("rating_explanation", str),
                            ]): continue
                    response["weight"] = weight
                    response["entities"] = ents
                except Exception as e:
                    print("ERROR: ", traceback.format_exc())
                    self._on_error(e, traceback.format_exc(), None)
                    continue

                add_community_info2graph(graph, ents, response["title"])
                res_str.append(self._get_text_output(response))
                res_dict.append(response)
                over += 1
                if callback: callback(msg=f"Communities: {over}/{total}, elapsed: {timer() - st}s, used tokens: {token_count}")

        return CommunityReportsResult(
            structured_output=res_dict,
            output=res_str,
        )

    def _get_text_output(self, parsed_output: dict) -> str:
        title = parsed_output.get("title", "Report")
        summary = parsed_output.get("summary", "")
        findings = parsed_output.get("findings", [])

        def finding_summary(finding: dict):
            if isinstance(finding, str):
                return finding
            return finding.get("summary")

        def finding_explanation(finding: dict):
            if isinstance(finding, str):
                return ""
            return finding.get("explanation")

        report_sections = "\n\n".join(
            f"## {finding_summary(f)}\n\n{finding_explanation(f)}" for f in findings
        )
        return f"# {title}\n\n{summary}\n\n{report_sections}"