Spaces:
Paused
Paused
# | |
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
from abc import ABC | |
from api.db import LLMType | |
from api.db.services.llm_service import LLMBundle | |
from agent.component import GenerateParam, Generate | |
from rag.utils import num_tokens_from_string, encoder | |
class RelevantParam(GenerateParam): | |
""" | |
Define the Relevant component parameters. | |
""" | |
def __init__(self): | |
super().__init__() | |
self.prompt = "" | |
self.yes = "" | |
self.no = "" | |
def check(self): | |
super().check() | |
self.check_empty(self.yes, "[Relevant] 'Yes'") | |
self.check_empty(self.no, "[Relevant] 'No'") | |
def get_prompt(self): | |
self.prompt = """ | |
You are a grader assessing relevance of a retrieved document to a user question. | |
It does not need to be a stringent test. The goal is to filter out erroneous retrievals. | |
If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. | |
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question. | |
No other words needed except 'yes' or 'no'. | |
""" | |
return self.prompt | |
class Relevant(Generate, ABC): | |
component_name = "Relevant" | |
def _run(self, history, **kwargs): | |
q = "" | |
for r, c in self._canvas.history[::-1]: | |
if r == "user": | |
q = c | |
break | |
ans = self.get_input() | |
ans = " - ".join(ans["content"]) if "content" in ans else "" | |
if not ans: | |
return Relevant.be_output(self._param.no) | |
ans = "Documents: \n" + ans | |
ans = f"Question: {q}\n" + ans | |
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id) | |
if num_tokens_from_string(ans) >= chat_mdl.max_length - 4: | |
ans = encoder.decode(encoder.encode(ans)[:chat_mdl.max_length - 4]) | |
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": ans}], | |
self._param.gen_conf()) | |
print(ans, ":::::::::::::::::::::::::::::::::") | |
if ans.lower().find("yes") >= 0: | |
return Relevant.be_output(self._param.yes) | |
if ans.lower().find("no") >= 0: | |
return Relevant.be_output(self._param.no) | |
assert False, f"Relevant component got: {ans}" | |