Spaces:
Paused
Paused
# | |
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
import datetime | |
import json | |
import traceback | |
from flask import request | |
from flask_login import login_required, current_user | |
from elasticsearch_dsl import Q | |
from rag.app.qa import rmPrefix, beAdoc | |
from rag.nlp import search, rag_tokenizer, keyword_extraction | |
from rag.utils.es_conn import ELASTICSEARCH | |
from rag.utils import rmSpace | |
from api.db import LLMType, ParserType | |
from api.db.services.knowledgebase_service import KnowledgebaseService | |
from api.db.services.llm_service import TenantLLMService | |
from api.db.services.user_service import UserTenantService | |
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request | |
from api.db.services.document_service import DocumentService | |
from api.settings import RetCode, retrievaler, kg_retrievaler | |
from api.utils.api_utils import get_json_result | |
import hashlib | |
import re | |
def list_chunk(): | |
req = request.json | |
doc_id = req["doc_id"] | |
page = int(req.get("page", 1)) | |
size = int(req.get("size", 30)) | |
question = req.get("keywords", "") | |
try: | |
tenant_id = DocumentService.get_tenant_id(req["doc_id"]) | |
if not tenant_id: | |
return get_data_error_result(retmsg="Tenant not found!") | |
e, doc = DocumentService.get_by_id(doc_id) | |
if not e: | |
return get_data_error_result(retmsg="Document not found!") | |
query = { | |
"doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True | |
} | |
if "available_int" in req: | |
query["available_int"] = int(req["available_int"]) | |
sres = retrievaler.search(query, search.index_name(tenant_id)) | |
res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()} | |
for id in sres.ids: | |
d = { | |
"chunk_id": id, | |
"content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[ | |
id].get( | |
"content_with_weight", ""), | |
"doc_id": sres.field[id]["doc_id"], | |
"docnm_kwd": sres.field[id]["docnm_kwd"], | |
"important_kwd": sres.field[id].get("important_kwd", []), | |
"img_id": sres.field[id].get("img_id", ""), | |
"available_int": sres.field[id].get("available_int", 1), | |
"positions": sres.field[id].get("position_int", "").split("\t") | |
} | |
if len(d["positions"]) % 5 == 0: | |
poss = [] | |
for i in range(0, len(d["positions"]), 5): | |
poss.append([float(d["positions"][i]), float(d["positions"][i + 1]), float(d["positions"][i + 2]), | |
float(d["positions"][i + 3]), float(d["positions"][i + 4])]) | |
d["positions"] = poss | |
res["chunks"].append(d) | |
return get_json_result(data=res) | |
except Exception as e: | |
if str(e).find("not_found") > 0: | |
return get_json_result(data=False, retmsg=f'No chunk found!', | |
retcode=RetCode.DATA_ERROR) | |
return server_error_response(e) | |
def get(): | |
chunk_id = request.args["chunk_id"] | |
try: | |
tenants = UserTenantService.query(user_id=current_user.id) | |
if not tenants: | |
return get_data_error_result(retmsg="Tenant not found!") | |
res = ELASTICSEARCH.get( | |
chunk_id, search.index_name( | |
tenants[0].tenant_id)) | |
if not res.get("found"): | |
return server_error_response("Chunk not found") | |
id = res["_id"] | |
res = res["_source"] | |
res["chunk_id"] = id | |
k = [] | |
for n in res.keys(): | |
if re.search(r"(_vec$|_sm_|_tks|_ltks)", n): | |
k.append(n) | |
for n in k: | |
del res[n] | |
return get_json_result(data=res) | |
except Exception as e: | |
if str(e).find("NotFoundError") >= 0: | |
return get_json_result(data=False, retmsg=f'Chunk not found!', | |
retcode=RetCode.DATA_ERROR) | |
return server_error_response(e) | |
def set(): | |
req = request.json | |
d = { | |
"id": req["chunk_id"], | |
"content_with_weight": req["content_with_weight"]} | |
d["content_ltks"] = rag_tokenizer.tokenize(req["content_with_weight"]) | |
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"]) | |
d["important_kwd"] = req["important_kwd"] | |
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_kwd"])) | |
if "available_int" in req: | |
d["available_int"] = req["available_int"] | |
try: | |
tenant_id = DocumentService.get_tenant_id(req["doc_id"]) | |
if not tenant_id: | |
return get_data_error_result(retmsg="Tenant not found!") | |
embd_id = DocumentService.get_embd_id(req["doc_id"]) | |
embd_mdl = TenantLLMService.model_instance( | |
tenant_id, LLMType.EMBEDDING.value, embd_id) | |
e, doc = DocumentService.get_by_id(req["doc_id"]) | |
if not e: | |
return get_data_error_result(retmsg="Document not found!") | |
if doc.parser_id == ParserType.QA: | |
arr = [ | |
t for t in re.split( | |
r"[\n\t]", | |
req["content_with_weight"]) if len(t) > 1] | |
if len(arr) != 2: | |
return get_data_error_result( | |
retmsg="Q&A must be separated by TAB/ENTER key.") | |
q, a = rmPrefix(arr[0]), rmPrefix(arr[1]) | |
d = beAdoc(d, arr[0], arr[1], not any( | |
[rag_tokenizer.is_chinese(t) for t in q + a])) | |
v, c = embd_mdl.encode([doc.name, req["content_with_weight"]]) | |
v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1] | |
d["q_%d_vec" % len(v)] = v.tolist() | |
ELASTICSEARCH.upsert([d], search.index_name(tenant_id)) | |
return get_json_result(data=True) | |
except Exception as e: | |
return server_error_response(e) | |
def switch(): | |
req = request.json | |
try: | |
tenant_id = DocumentService.get_tenant_id(req["doc_id"]) | |
if not tenant_id: | |
return get_data_error_result(retmsg="Tenant not found!") | |
if not ELASTICSEARCH.upsert([{"id": i, "available_int": int(req["available_int"])} for i in req["chunk_ids"]], | |
search.index_name(tenant_id)): | |
return get_data_error_result(retmsg="Index updating failure") | |
return get_json_result(data=True) | |
except Exception as e: | |
return server_error_response(e) | |
def rm(): | |
req = request.json | |
try: | |
if not ELASTICSEARCH.deleteByQuery( | |
Q("ids", values=req["chunk_ids"]), search.index_name(current_user.id)): | |
return get_data_error_result(retmsg="Index updating failure") | |
e, doc = DocumentService.get_by_id(req["doc_id"]) | |
if not e: | |
return get_data_error_result(retmsg="Document not found!") | |
deleted_chunk_ids = req["chunk_ids"] | |
chunk_number = len(deleted_chunk_ids) | |
DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0) | |
return get_json_result(data=True) | |
except Exception as e: | |
return server_error_response(e) | |
def create(): | |
req = request.json | |
md5 = hashlib.md5() | |
md5.update((req["content_with_weight"] + req["doc_id"]).encode("utf-8")) | |
chunck_id = md5.hexdigest() | |
d = {"id": chunck_id, "content_ltks": rag_tokenizer.tokenize(req["content_with_weight"]), | |
"content_with_weight": req["content_with_weight"]} | |
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"]) | |
d["important_kwd"] = req.get("important_kwd", []) | |
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req.get("important_kwd", []))) | |
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19] | |
d["create_timestamp_flt"] = datetime.datetime.now().timestamp() | |
try: | |
e, doc = DocumentService.get_by_id(req["doc_id"]) | |
if not e: | |
return get_data_error_result(retmsg="Document not found!") | |
d["kb_id"] = [doc.kb_id] | |
d["docnm_kwd"] = doc.name | |
d["doc_id"] = doc.id | |
tenant_id = DocumentService.get_tenant_id(req["doc_id"]) | |
if not tenant_id: | |
return get_data_error_result(retmsg="Tenant not found!") | |
embd_id = DocumentService.get_embd_id(req["doc_id"]) | |
embd_mdl = TenantLLMService.model_instance( | |
tenant_id, LLMType.EMBEDDING.value, embd_id) | |
v, c = embd_mdl.encode([doc.name, req["content_with_weight"]]) | |
v = 0.1 * v[0] + 0.9 * v[1] | |
d["q_%d_vec" % len(v)] = v.tolist() | |
ELASTICSEARCH.upsert([d], search.index_name(tenant_id)) | |
DocumentService.increment_chunk_num( | |
doc.id, doc.kb_id, c, 1, 0) | |
return get_json_result(data={"chunk_id": chunck_id}) | |
except Exception as e: | |
return server_error_response(e) | |
def retrieval_test(): | |
req = request.json | |
page = int(req.get("page", 1)) | |
size = int(req.get("size", 30)) | |
question = req["question"] | |
kb_id = req["kb_id"] | |
doc_ids = req.get("doc_ids", []) | |
similarity_threshold = float(req.get("similarity_threshold", 0.2)) | |
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3)) | |
top = int(req.get("top_k", 1024)) | |
try: | |
e, kb = KnowledgebaseService.get_by_id(kb_id) | |
if not e: | |
return get_data_error_result(retmsg="Knowledgebase not found!") | |
embd_mdl = TenantLLMService.model_instance( | |
kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id) | |
rerank_mdl = None | |
if req.get("rerank_id"): | |
rerank_mdl = TenantLLMService.model_instance( | |
kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"]) | |
if req.get("keyword", False): | |
chat_mdl = TenantLLMService.model_instance(kb.tenant_id, LLMType.CHAT) | |
question += keyword_extraction(chat_mdl, question) | |
retr = retrievaler if kb.parser_id != ParserType.KG else kg_retrievaler | |
ranks = retr.retrieval(question, embd_mdl, kb.tenant_id, [kb_id], page, size, | |
similarity_threshold, vector_similarity_weight, top, | |
doc_ids, rerank_mdl=rerank_mdl) | |
for c in ranks["chunks"]: | |
if "vector" in c: | |
del c["vector"] | |
return get_json_result(data=ranks) | |
except Exception as e: | |
if str(e).find("not_found") > 0: | |
return get_json_result(data=False, retmsg=f'No chunk found! Check the chunk status please!', | |
retcode=RetCode.DATA_ERROR) | |
return server_error_response(e) | |
def knowledge_graph(): | |
doc_id = request.args["doc_id"] | |
req = { | |
"doc_ids":[doc_id], | |
"knowledge_graph_kwd": ["graph", "mind_map"] | |
} | |
tenant_id = DocumentService.get_tenant_id(doc_id) | |
sres = retrievaler.search(req, search.index_name(tenant_id)) | |
obj = {"graph": {}, "mind_map": {}} | |
for id in sres.ids[:2]: | |
ty = sres.field[id]["knowledge_graph_kwd"] | |
try: | |
obj[ty] = json.loads(sres.field[id]["content_with_weight"]) | |
except Exception as e: | |
print(traceback.format_exc(), flush=True) | |
return get_json_result(data=obj) | |