Edit model card

Details: https://spacy.io/models/zh#zh_core_web_md

Chinese pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler.

Feature Description
Name zh_core_web_md
Version 3.7.0
spaCy >=3.7.0,<3.8.0
Default Pipeline tok2vec, tagger, parser, attribute_ruler, ner
Components tok2vec, tagger, parser, senter, attribute_ruler, ner
Vectors 500000 keys, 20000 unique vectors (300 dimensions)
Sources OntoNotes 5 (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)
CoreNLP Universal Dependencies Converter (Stanford NLP Group)
Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia) (Explosion)
License MIT
Author Explosion

Label Scheme

View label scheme (100 labels for 3 components)
Component Labels
tagger AD, AS, BA, CC, CD, CS, DEC, DEG, DER, DEV, DT, ETC, FW, IJ, INF, JJ, LB, LC, M, MSP, NN, NR, NT, OD, ON, P, PN, PU, SB, SP, URL, VA, VC, VE, VV, X, _SP
parser ROOT, acl, advcl:loc, advmod, advmod:dvp, advmod:loc, advmod:rcomp, amod, amod:ordmod, appos, aux:asp, aux:ba, aux:modal, aux:prtmod, auxpass, case, cc, ccomp, compound:nn, compound:vc, conj, cop, dep, det, discourse, dobj, etc, mark, mark:clf, name, neg, nmod, nmod:assmod, nmod:poss, nmod:prep, nmod:range, nmod:tmod, nmod:topic, nsubj, nsubj:xsubj, nsubjpass, nummod, parataxis:prnmod, punct, xcomp
ner CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE, LAW, LOC, MONEY, NORP, ORDINAL, ORG, PERCENT, PERSON, PRODUCT, QUANTITY, TIME, WORK_OF_ART

Accuracy

Type Score
TOKEN_ACC 95.85
TOKEN_P 94.58
TOKEN_R 91.36
TOKEN_F 92.94
TAG_ACC 90.04
SENTS_P 78.89
SENTS_R 72.80
SENTS_F 75.72
DEP_UAS 70.50
DEP_LAS 65.22
ENTS_P 71.88
ENTS_R 67.90
ENTS_F 69.83
Downloads last month
18
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results